AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering

Mingze Li§Yunjia Wei§Xingce FanGuoqun LiQi HaoTeng Qiu( )
School of Physics Southeast University Nanjing 211189 China

§ Mingze Li and Yunjia Wei contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Van der Waals heterojunctions (vdWHs) provide an excellent material system for the research of heterojunction-enhanced Raman scattering (HERS) due to their complexity and diversity. However, the traditional two-dimensional vdWHs are not conducive to the full utilization of near-field light due to the limitation of single dimension. Herein, we fabricate T-shaped mixed-dimensional SnSe2/ReS2 vdWHs via chemical vapor deposition and wetting transfer method, and demonstrate that the mixed-dimensional vdWHs can be used as ultrasensitive HERS chips based on the effective photo-induced charge transfer. Besides, the radiative energy transfer effect enhanced by near-field light further magnifies the HERS signals, improving the detection limit of rhodamine 6G (R6G) to femtomolar level. Furthermore, we demonstrate that the ultrasensitive screening of crystal violet in multicomponent solutions adsorbed on SnSe2/ReS2 vdWHs can be achieved by adjusting the laser wavelength, which has not been achieved by noble metal materials. This work provides new insights into the mixed-dimensional vdWHs and demonstrates the great application potential of T-shaped heterojunctions.

Electronic Supplementary Material

Download File(s)
12274_2021_3537_MOESM1_ESM.pdf (5 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

3

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

4

Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808–813.

5

Rigosi, A. F.; Hill, H. M.; Li, Y. L.; Chernikov, A.; Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/ WSe2. Nano Lett. 2015, 15, 5033–5038.

6

Waters, D.; Nie, Y. F.; Lüpke, F.; Pan, Y.; Fölsch, S.; Lin, Y. C.; Jariwala, B.; Zhang, K. H.; Wang, C.; Lv, H. Y. et al. Flat bands and mechanical deformation effects in the moiré superlattice of MoS2-WSe2 heterobilayers. ACS Nano 2020, 14, 7564–7573.

7

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.

8

Zhu, H. M.; Wang, J.; Gong, Z. Z.; Kim, Y. D.; Hone, J.; Zhu, X. Y. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 2017, 17, 3591–3598.

9

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2– WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

10

Zubair, M.; Zhu, C. G.; Sun, X. X.; Liu, H. W.; Zheng, B. Y.; Yi, J. L.; Zhu, X. L.; Li, D.; Pan, A. L. Record high photoresponse observed in CDS-black phosphorous van der Waals heterojunction photodiode. Sci. China Mater. 2020, 63, 1570–1578.

11

Chen, M. P.; Ji, B.; Dai, Z. Y.; Du, X. Y.; He, B. C.; Chen, G.; Liu, D.; Chen, S.; Lo, K. H.; Wang, S. P. et al. Vertically-aligned 1T/2H-MS2 (M = Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity. Appl. Surf. Sci. 2020, 527, 146769.

12

Zhang, N.; Lin, J. J.; Zhang, S. Q.; Zhang, S. S.; Li, X. B.; Liu, D. Y.; Xu, H.; Zhang, J.; Tong, L. M. Doping modulated in-plane anisotropic Raman enhancement on layered ReS2. Nano Res. 2019, 12, 563–568.

13

Zhao, J. L.; Ma, D. T.; Wang, C.; Guo, Z. N.; Zhang, B.; Li, J. Q.; Nie, G. H.; Xie, N.; Zhang, H. Recent advances in anisotropic two-dimensional materials and device applications. Nano Res. 2021, 14, 897–919.

14

Li, M. Z.; Fan, X. C.; Gao, Y. M.; Qiu, T. W18O49/monolayer MoS2 heterojunction-enhanced Raman scattering. J. Phys. Chem. Lett. 2019, 10, 4038–4044.

15

Lan, L. L.; Gao, Y. M.; Fan, X. C.; Li, M. Z.; Hao, Q.; Qiu, T. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 2021, 16, 43300.

16

Chen, M. P.; Liu, D.; Du, X. Y.; Lo, K. H.; Wang, S. P.; Zhou, B. P.; Pan, H. 2D materials: Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing. TrAC Trends Anal. Chem. 2020, 130, 115983.

17

Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120– 11130.

18

Chiu, M. H.; Tseng, W. H.; Tang, H. L.; Chang, Y. H.; Chen, C. H.; Hsu, W. T.; Chang, W. H.; Wu, C. I.; Li, L. J. Band alignment of 2D Transition metal dichalcogenide heterojunctions. Adv. Funct. Mater. 2017, 27, 1603756.

19

Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193–11197.

20

Tan, Y.; Ma, L. N.; Gao, Z. B.; Chen, M.; Chen, F. Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering. Nano Lett. 2017, 17, 2621–2626.

21

Seo, J.; Lee, J.; Kim, Y.; Koo, D.; Lee, G.; Park, H. Ultrasensitive Plasmon-free surface-enhanced Raman spectroscopy with femtomolar detection limit from 2D van der Waals heterostructure. Nano Lett. 2020, 20, 1620–1630.

22

Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

23

Wu, X. L.; Xiong, S. J.; Liu, Z.; Chen, J.; Shen, J. C.; Li, T. H.; Wu, P. H.; Chu, P. K. Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 2011, 6, 103–106.

24

Li, M. Z.; Gao, Y. M.; Fan, X. C.; Wei, Y. J.; Hao, Q.; Qiu, T. Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horiz. 2021, 6, 186–191.

25

Battaglia, C.; Hsu, C. M.; Söderström, K.; Escarré, J.; Haug, F. J.; Charrière, M.; Boccard, M.; Despeisse, M.; Alexander, D. T. L.; Cantoni, M. et al. Light trapping in solar cells: Can periodic beat random?. ACS Nano 2012, 6, 2790–2797.

26

Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669–674.

27

Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

28

Zhang, Q.; Wang, W. J.; Zhang, J. Q.; Zhu, X. H.; Zhang, Q. Q.; Zhang, Y. J.; Ren, Z. M.; Song, S. S.; Wang, J. M.; Ying, Z. H. et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv. Mater. 2018, 30, 1707123.

29

Miao, P.; Qin, J. K.; Shen, Y. F.; Su, H. M.; Dai, J. F.; Song, B.; Du, Y. C.; Sun, M. T.; Zhang, W.; Wang, H. L. et al. Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets. Small 2018, 14, 1704079.

30

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

31

Gonzalez, J. M.; Oleynik, I. I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443.

32

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

33

Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 1966, 15, 627–637.

34

Yu, Y. F.; Sun, Y.; Hu, Z. L.; An, X. H.; Zhou, D. M.; Zhou, H. Z.; Wang, W. H.; Liu, K. Y.; Jiang, J.; Yang, D. D. et al. Fast photoelectric conversion in the near-infrared enabled by Plasmon-induced hot-electron transfer. Adv. Mater. 2019, 31, 1903829.

35

Peng, B.; Yu, G. N.; Liu, X. F.; Liu, B.; Liang, X.; Bi, L.; Deng, L. J.; Sum, T. C.; Loh, K. P. Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 2016, 3, 025020.

36

Lombardi, J. R.; Birke, R. L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742.

37

Lombardi, J. R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss. 2017, 205, 105–120.

38

Richter, A. P.; Lombardi, J. R.; Zhao, B. Size and wavelength dependence of the charge-transfer contributions to surface-enhanced Raman spectroscopy in Ag/PATP/ZnO junctions. J. Phys. Chem. C 2010, 114, 1610–1614.

39

Li, W. W.; Xiong, L.; Li, N. C.; Pang, S.; Xu, G. L.; Yi, C. H.; Wang, Z. X.; Gu, G. Q.; Li, K. W.; Li, W. M. et al. Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection. J. Mater. Chem. C 2019, 7, 10179–10186.

40

Yu, J.; Guo, Y.; Wang, H. J.; Su, S.; Zhang, C.; Man, B. Y.; Lei, F. C. Quasi optical cavity of hierarchical ZnO Nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection. J. Phys. Chem. Lett. 2019, 10, 3676–3680.

41

Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons, Ltd: Chichester, 2005.

42

Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.

43

Yamamoto, Y. S.; Itoh, T. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies. J. Raman Spectrosc. 2016, 47, 78–88.

44

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

45

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

46

Meng, X. H.; Zhou, Y. J.; Chen, K.; Roberts, R. H.; Wu, W. Z.; Lin, J. F.; Chen, R. T.; Xu, X. C.; Wang, Y. G. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater. 2018, 6, 1800137.

Nano Research
Pages 637-643
Cite this article:
Li M, Wei Y, Fan X, et al. Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Research, 2022, 15(1): 637-643. https://doi.org/10.1007/s12274-021-3537-2
Topics:

797

Views

23

Crossref

24

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 25 March 2021
Revised: 25 April 2021
Accepted: 25 April 2021
Published: 06 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return