Journal Home > Volume 14 , Issue 10

Metal-nitrogen-carbon (M-N-C) single-atom catalysts exhibit desirable electrochemical catalytic properties. However, the replacement of N atoms by heteroatoms (B, P, S, etc.) has been regarded as a useful method for regulating the coordination environment. The structure engineered M-N-C sites via doping heteroatoms play an important role to the adsorption and activation of the oxygen intermediate. Herein, we develop an efficient strategy to construct dual atomic site catalysts via the formation of a Co1-PN and Ni1-PN planar configuration. The developed Co1-PNC/Ni1-PNC catalyst exhibits excellent bifunctional electrocatalytic performance in alkaline solution. Both experimental and theoretical results demonstrated that the N/P coordinated Co/Ni sites moderately reduced the binding interaction of oxygen intermediates. The Co1-PNC/Ni1-PNC endows a rechargeable Zn-air battery with excellent power density and cycling stability as an air-cathode, which is superior to that of the benchmark Pt/C+IrO2. This work paves an avenue for design of dual single-atomic sites and regulation of the atomic configuration on carbon-based materials to achieve high-performance electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries

Show Author's information Botao Hu1,§Aijian Huang1,2,§Xuejiang Zhang3Zheng Chen4Renyong Tu1Wei Zhu3Zhongbin Zhuang3Chen Chen1( )Qing Peng1( )Yadong Li1( )
Department of Chemistry,Tsinghua University,Beijing,100084,China;
School of Electronics Science and Engineering,University of Electronic Science and Technology of China,Chengdu,610054,China;
College of Chemical Engineering,Beijing University of Chemical Technology,Beijing,100029,China;
College of Chemistry and Materials Science,Anhui Normal University,Wuhu,241000,China;

§ Botao Hu and Aijian Huang contributed equally to this work.

Abstract

Metal-nitrogen-carbon (M-N-C) single-atom catalysts exhibit desirable electrochemical catalytic properties. However, the replacement of N atoms by heteroatoms (B, P, S, etc.) has been regarded as a useful method for regulating the coordination environment. The structure engineered M-N-C sites via doping heteroatoms play an important role to the adsorption and activation of the oxygen intermediate. Herein, we develop an efficient strategy to construct dual atomic site catalysts via the formation of a Co1-PN and Ni1-PN planar configuration. The developed Co1-PNC/Ni1-PNC catalyst exhibits excellent bifunctional electrocatalytic performance in alkaline solution. Both experimental and theoretical results demonstrated that the N/P coordinated Co/Ni sites moderately reduced the binding interaction of oxygen intermediates. The Co1-PNC/Ni1-PNC endows a rechargeable Zn-air battery with excellent power density and cycling stability as an air-cathode, which is superior to that of the benchmark Pt/C+IrO2. This work paves an avenue for design of dual single-atomic sites and regulation of the atomic configuration on carbon-based materials to achieve high-performance electrocatalysts.

Keywords: bifunctional electrocatalyst, metal-organic framework, Zn-air battery, single-atom catalysts, dual atomic sites

References(41)

1

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536-4563.

2

Ren, S. S.; Duan, X. D.; Liang, S.; Zhang, M. D.; Zheng, H. G. Bifunctional electrocatalysts for Zn-air batteries: Recent developments and future perspectives. J. Mater. Chem. A 2020, 8, 6144-6182.

3

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998-1003.

4

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614-8618.

5

Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961-8969.

6

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935-945.

7

Luo, F.; Roy, A.; Silvioli, L.; Cullen, D. A.; Zitolo, A.; Sougrati, M. T.; Oguz, I. C.; Mineva, T.; Teschner, D.; Wagner, S. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 2020, 19, 1215-1223.

8

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971-18980.

9

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442-1476.

10

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.

11

Ma, J. G.; Wang, L. G.; Deng, Y. D.; Zhang, W. W.; Wu, T. P.; Song, Y. J. Mass production of high-performance single atomic FeNC electrocatalysts via sequenced ultrasonic atomization and pyrolysis process. Sci. China Mater. 2021, 64, 631-641.

12

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

13

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594-11598.

14

Sugawara, T.; Kawashima, N.; Murakami, T. N. Kinetic study of nafion degradation by fenton reaction. J. Power Sources 2011, 196, 2615-2620.

15

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414-1448.

16

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404-2412.

17

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212-3221.

18

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994-5999.

19

Gong, S. P.; Wang, C. L.; Jiang, P.; Hu, L.; Lei, H.; Chen, Q. W. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J. Mater. Chem. A 2018, 6, 13254-13262.

20

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

21

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.

22

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090-1099.

23

Li, H. N.; Cao, C. Y.; Liu, J.; Shi, Y.; Si, R.; Gu, L.; Song, W. G. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. 2019, 62, 1306-1314.

24

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. , in press, DOI: 10.1007/s12274-020-3244-4.

25

Zhao, C. M.; Wang, Y.; Li, Z. J.; Chen, W. X.; Xu, Q.; He, D. S.; Xi, D. S.; Zhang, Q. H.; Yuan, T. W.; Qu, Y. T. et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule 2019, 3, 584-594.

26

Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777-2783.

27

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881-890.

28

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

29

Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

30

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.

31

Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206-3211.

32

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

33

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004-10011.

34

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082-3087.

35

Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133-4142.

36

Zhou, W. L.; Su, H.; Shen, S. W.; Li, Y. L.; Zhang, H.; Liu, M. H.; Zhao, X.; Cheng, W. R.; Yao, P.; Liu, Q. H. Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction. ACS Sustainable Chem. Eng. 2020, 8, 6898-6904.

37

Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

38

Dangol, R.; Dai, Z. F.; Chaturvedi, A.; Zheng, Y.; Zhang, Y.; Dinh, K. N.; Li, B.; Zong, Y.; Yan, Q. Y. Few-layer NiPS3 nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale 2018, 10, 4890-4896.

39

She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175-2182.

40

Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B 2019, 240, 112-121.

41

Norskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937-943.

File
12274_2021_3535_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2021
Revised: 22 April 2021
Accepted: 22 April 2021
Published: 23 May 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21971135, 21925202, 21872076, and 21590792), the National Key R&D Program of China (Nos. 2017YFA0700101 and 2016YFA0202801), and Beijing Natural Science Foundation (No. JQ18007). We thank the 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility (BSRF). Professor Yitai Qian, one of the pioneers of the inorganic chemistry in China, has made a great contribution in the fields of inorganic synthesis chemistry and superconducting materials. We benefit from his words and deeds. This article is dedicated to Professor Yitai Qian on the occasion of his 80th birthday.

Return