Journal Home > Volume 16 , Issue 4

Cu-based electrocatalysts have provoked much attention for their high activity and selectivity in carbon dioxide (CO2) conversion into multi-carbon hydrocarbons. However, during the electrochemical reaction, Cu catalysts inevitably undergo surface reconstruction whose impact on CO2 conversion performance remains contentious. Here we report that polycrystalline Cu nanoparticles (denoted as Cu-s) with rich high-index facets, derived from Cu2xS through desulphurization and surface reconstruction, offer an excellent platform for investigating the role of surface reconstruction in electrocatalytic CO2 conversion. During the formation of Cu-s catalyst, the two stages of desulphurization and surface reconstruction can be clearly resolved by in situ X-ray absorption spectroscopy and OH adsorption characterizations, which are well correlated with the changes in electrocatalytic performance. It turns out that the high CO2 conversion performance, achieved by the Cu-s catalyst (Faradic efficiency of 68.6% and partial current density of 40.8 mA/cm2 in H-cell toward C2H4 production), is attributed to the increased percentage of high-index facets in Cu-s during the surface reconstruction. Furthermore, the operando electrochemical Raman spectroscopy further reveals that the conversion of the CO2 into the C2H4 on Cu-s is intermediated by the production of *COCHO. Our findings manifest that the surface reconstruction is an effective method for tuning the reaction intermediate of the CO2 conversion toward high-value multicarbon (C2+) chemicals, and highlight the significance of in situ characterizations in enhancing the understanding of the surface structure and its role in electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion

Show Author's information Chaohua He1,2,§Delong Duan1,§Jingxiang Low1,§Yu Bai1Yawen Jiang1Xinyu Wang1Shuangming Chen1Ran Long1( )Li Song1Yujie Xiong1,2( )
Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei 230031, China

§ Chaohua He, Delong Duan, and Jingxiang Low contributed equally to this work.

Abstract

Cu-based electrocatalysts have provoked much attention for their high activity and selectivity in carbon dioxide (CO2) conversion into multi-carbon hydrocarbons. However, during the electrochemical reaction, Cu catalysts inevitably undergo surface reconstruction whose impact on CO2 conversion performance remains contentious. Here we report that polycrystalline Cu nanoparticles (denoted as Cu-s) with rich high-index facets, derived from Cu2xS through desulphurization and surface reconstruction, offer an excellent platform for investigating the role of surface reconstruction in electrocatalytic CO2 conversion. During the formation of Cu-s catalyst, the two stages of desulphurization and surface reconstruction can be clearly resolved by in situ X-ray absorption spectroscopy and OH adsorption characterizations, which are well correlated with the changes in electrocatalytic performance. It turns out that the high CO2 conversion performance, achieved by the Cu-s catalyst (Faradic efficiency of 68.6% and partial current density of 40.8 mA/cm2 in H-cell toward C2H4 production), is attributed to the increased percentage of high-index facets in Cu-s during the surface reconstruction. Furthermore, the operando electrochemical Raman spectroscopy further reveals that the conversion of the CO2 into the C2H4 on Cu-s is intermediated by the production of *COCHO. Our findings manifest that the surface reconstruction is an effective method for tuning the reaction intermediate of the CO2 conversion toward high-value multicarbon (C2+) chemicals, and highlight the significance of in situ characterizations in enhancing the understanding of the surface structure and its role in electrocatalysis.

Keywords: surface reconstruction, high-index facets, CO2 electroreduction reaction, ethylene (C2H4), Cu catalysts

References(28)

[1]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[2]

Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.

[3]

Chen, J. Y.; Wang, T. T.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Feng, P. Y.; Hou, Y. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3335-x.

[4]

Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.

[5]

Li, Y. S.; Chen, H.; Wang, W. J.; Huang, W. G.; Ning, Y. X.; Liu, Q. F.; Cui, Y.; Han, Y.; Liu, Z.; Yang, F. et al. Crystal-plane-dependent redox reaction on Cu surfaces. Nano Res. 2020, 13, 1677–1685.

[6]

Wang, Y. H.; Wang, Z. Y.; Dinh, C. T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C. S.; Gabardo, C. M.; Luo, M. C. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 2020, 3, 98–106.

[7]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[8]

Lee, S. H.; Lin, J. C.; Farmand, M.; Landers, A. T.; Feaster, J. T.; Avilés Acosta, J. E.; Beeman, J. W.; Ye, Y. F.; Yano, J.; Mehta, A. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2021, 143, 588–592.

[9]

Choi, C.; Kwon, S.; Cheng, T.; Xu, M. J.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X. Q.; Duan, X. F. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 2020, 3, 804–812.

[10]

Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X. L.; Jovanov, Z.; Gliech, M.; Cuenya, B. R.; Varela, A. S. et al. Electrocatalytic CO2 reduction on CuOx nanocubes: Tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem., Int. Ed. 2020, 132, 18130–18139.

[11]

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

[12]

Mi, Y. Y.; Shen, S. B.; Peng, X. Y.; Bao, H. H.; Liu, X. J.; Luo, J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem 2019, 6, 2393–2397.

[13]

Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. L. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

[14]

Shao, P.; Ci, S. Q.; Yi, L. C.; Cai, P. W.; Huang, P.; Cao, C. S.; Wen, Z. H. Hollow CuS microcube electrocatalysts for CO2 reduction reaction. ChemElectroChem 2017, 4, 2593–2598.

[15]

Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. J. N. Anodic Cu2S and CuS nanorod and nanowall arrays: Preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305–14318.

[16]

Yuan, Q. C.; Liu, D.; Zhang, N.; Ye, W.; Ju, H. X.; Shi, L.; Long, R.; Zhu, J. F.; Xiong, Y. J. Noble-metal-free janus-like structures by cation exchange for Z-Scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem. , Int. Ed. 2017, 56, 4206–4210.

[17]

Li, W. H.; Shavel, A.; Guzman, R.; Rubio-Garcia, J.; Flox, C.; Fan, J. D.; Cadavid, D.; Ibáñez, M.; Arbiol, J.; Morante, J. R. et al. Morphology evolution of Cu2–xS nanoparticles: From spheres to dodecahedrons. Chem. Commun. 2011, 47, 10332–10334.

[18]

Liu, L. G.; Zhong, H. Z.; Bai, Z. L.; Zhang, T.; Fu, W. P.; Shi, L. J.; Xie, H. Y.; Deng, L. G.; Zou, B. S. Controllable transformation from rhombohedral Cu1.8S nanocrystals to hexagonal CuS clusters: Phase- and composition-dependent plasmonic properties. Chem. Mater. 2013, 25, 4828–4834.

[19]

He, C. H.; Chen, S. J.; Long, R.; Song, L.; Xiong, Y. J. Design of CuInS2 hollow nanostructures toward CO2 electroreduction. Sci. China Chem. 2020, 63, 1721–1726.

[20]

Zheng, X. L.; De Luna, P.; García de Arquer, F. P.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

[21]

Tan, D. X.; Zhang, J. L.; Yao, L.; Tan, X. N.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zheng, L. R.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774.

[22]

Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.

[23]

Fields, M.; Hong, X.; Nørskov, J. K.; Chan, K. R. Role of subsurface oxygen on Cu surfaces for CO2 electrochemical reduction. J. Phys. Chem. C 2018, 122, 16209–16215.

[24]

Tian, F. H.; Wang, Z. X. Adsorption of an O atom on the Cu (311) step defective surface. J. Phys. Chem. B 2004, 108, 1392–1395.

[25]

Raciti, D.; Cao, L.; Livi, K. J. T.; Rottmann, P. F.; Tang, X.; Li, C. Y.; Hicks, Z.; Bowen, K. H.; Hemker, K. J.; Mueller, T. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 2017, 7, 4467–4472.

[26]

Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

[27]

Cheng, T.; Xiao, H.; Goddard Ⅲ, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. USA 2017, 114, 1795–1800.

[28]

Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 2016, 7, 1471–1477.

File
12274_2021_3532_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 April 2021
Revised: 15 April 2021
Accepted: 19 April 2021
Published: 20 May 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Key R & D Program of China (Nos. 2017YFA0207301 and 2017YFA0403402), the National Natural Science Foundation of China (Nos. 21725102, 91961106, U1832156, and 22075267), Science and Technological Fund of Anhui Province for Outstanding Youth (No. 2008085J05), Youth Innovation Promotion Association of CAS (No. 2019444), Young Elite Scientist Sponsorship Program by CAST, China Postdoctoral Science Foundation (Nos. 2019M652190 and 2020T130627), Users with Excellence Program of Hefei Science Center CAS (No. 2020HSC-UE003) and DNL Cooperation Fund, CAS (No. DNL201922). The in situ XAS measurements were employed on beamlines 1W1B (BSRF) and BL14W1 (SSRF). We thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

Return