Journal Home > Volume 15 , Issue 1

Coupling two-dimention carbon materials like graphene on photodelectrode can achieve high-efficiency photoelectrochemical cells. Bottom-up synthesis of carbon-based two-dimensional materials in green media from simple molecules is very attractive but remains a challenge. Carbohydrate is an ideal precursor for the synthesis but previous report requires pyrolysis at high temperature (> 700 ℃). Herein, starting with glucose, we develop a low temperature (210 ℃) synthesis of carbonaceous nanosheets in aqueous solution of glucose. With the aid of ethylenediamine and Fe3+/Fe2+/Co2+/Ni2+ ions, the nanosheets can grow on hematite nanorod array with very close contact. Importantly, a metallic region is formed at the interface due to atom distribution distortion, which can promote the charge transfer. The activity can be greatly enhanced by about 500% due to fast charge transfer. This is much better than that prepared by physically or chemically mixing graphene and hematite (< 200%). The enhancement is mainly due to the deformation area between the nanosheets and the hematite. The effective hole diffusion length increases from 2 to 8 nm and lifetime of charge carrier also increases, as confirmed by ultrafast transient absorption spectra. This method provides more opportunity for simple, mild and cost-effective fabrication of carbon-based two-dimensional by bottom-up method.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bottom-up synthesis of semiconductive carbonaceous nanosheets on hematite photoanode for photoelectrochemical water splitting

Show Author's information Guosheng Li2,3Zhuofeng Hu1( )
School of Environment Science and Engineering Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat-sen University Guangzhou 510275 China
College of Environmental and Chemical Engineering Zhaoqing University Zhaoqing 526061 China
State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China

Abstract

Coupling two-dimention carbon materials like graphene on photodelectrode can achieve high-efficiency photoelectrochemical cells. Bottom-up synthesis of carbon-based two-dimensional materials in green media from simple molecules is very attractive but remains a challenge. Carbohydrate is an ideal precursor for the synthesis but previous report requires pyrolysis at high temperature (> 700 ℃). Herein, starting with glucose, we develop a low temperature (210 ℃) synthesis of carbonaceous nanosheets in aqueous solution of glucose. With the aid of ethylenediamine and Fe3+/Fe2+/Co2+/Ni2+ ions, the nanosheets can grow on hematite nanorod array with very close contact. Importantly, a metallic region is formed at the interface due to atom distribution distortion, which can promote the charge transfer. The activity can be greatly enhanced by about 500% due to fast charge transfer. This is much better than that prepared by physically or chemically mixing graphene and hematite (< 200%). The enhancement is mainly due to the deformation area between the nanosheets and the hematite. The effective hole diffusion length increases from 2 to 8 nm and lifetime of charge carrier also increases, as confirmed by ultrafast transient absorption spectra. This method provides more opportunity for simple, mild and cost-effective fabrication of carbon-based two-dimensional by bottom-up method.

Keywords: carbon, two-dimensional, hematite, bottom-up, photocatalytic water oxidation

References(64)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.

3

Guo, H. L.; Su, P.; Kang, X. F.; Ning, S. K. Synthesis and charac­terization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 2013, 1, 2248–2255.

4

Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.

5

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

6

Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

7

He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.; Yu, J. C. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 2021, 31, 2006505.

8

Bao, X. B.; Gong, Y. T.; Deng, J.; Wang, S. P.; Wang, Y. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res. 2017, 10, 1258–1267.

9

Su, D.; Wang, J.; Jin, H. Y.; Gong, Y. T.; Li, M. M.; Pang, Z. F.; Wang, Y. From "waste to gold": A one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J. Mater. Chem. A 2015, 3, 11756–11761.

10

Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.

11

Kuang, P. Y.; Sayed, M.; Fan, J. J.; Cheng, B.; Yu, J. G. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802.

12

Kuang, P. Y.; He, M.; Zou, H. Y.; Yu, J. G.; Fan, K. 0D/3D MoS2-NiS2/ N-doped graphene foam composite for efficient overall water splitting. Appl. Catal. B Environ. 2019, 254, 15–25.

13

Liu, N.; Kim, K.; Hsu, P. C.; Sokolov, A. N.; Yap, F. L.; Yuan, H. T.; Xie, Y. W.; Yan, H.; Cui, Y.; Hwang, H. Y. et al. Large-scale production of graphene nanoribbons from electrospun polymers. J. Am. Chem. Soc. 2014, 136, 17284–17291.

14

Lei, H.; Yan, T. T.; Wang, H.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J. Mater. Chem. A 2015, 3, 5934–5941.

15

Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689–9692.

16

Wang, X. B.; Zhang, Y. J.; Zhi, C. Y.; Wang, X.; Tang, D. M.; Xu, Y. B.; Weng, Q. H.; Jiang, X. F.; Mitome, M.; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905.

17

Latorre-Sanchez, M.; Primo, A.; Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew Chem., Int Ed. 2013, 52, 11813–11816.

18

Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241–278.

19

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

20

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

21

Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

22

Sun, L.; Tian, C. G.; Li, M. T.; Meng, X. Y.; Wang, L.; Wang, R. H.; Yin, J.; Fu, H. G. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470.

23

Bao, L.; Li, T.; Chen, S.; Peng, C.; Li, L.; Xu, Q.; Chen, Y. S.; Ou, E. C.; Xu, W. J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 2017, 13, 8.

24

Shu, Y. Y.; Ohnishi, R.; Ichikawa, M. Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/HZSM-5 catalyst: Optimization of reaction parameters and promotion by CO2 addition. J. Catal. 2002, 206, 134–142.

25

Rifat, A.; Mahon, M. F.; Weller, A. S. Dehydrogenation of cyclohexenes to cyclohexadienes by [(PPh3)2Rh]+. The isolation of an intermediate in the dehydrogenation of cyclohexane to benzene: Crystal structure of [(η4-C6H8)Rh(PPh3)2][closo-CB11H6Br6]. J. Organomet. Chem. 2003, 667, 1–4.

26

Song, P.; Zhang, X. Y.; Sun, M. X.; Cui, X. L.; Lin, Y. H. Graphene oxide modified TiO2 nanotube arrays: Enhanced visible light photo­electrochemical properties. Nanoscale 2012, 4, 1800–1804.

27

Zhang, X. F.; Zhang, B. Y.; Huang, D. K.; Yuan, H. L.; Wang, M. K.; Shen, Y. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon 2014, 80, 591–598.

28

Chae, S. Y.; Sudhagar, P.; Fujishima, A.; Hwang, Y. J.; Joo, O. S. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution. Phys. Chem. Chem. Phys. 2015, 17, 7714–7719.

29

Dai, Y. Q.; Sun, Y. B.; Yao, J.; Ling, D. D.; Wang, Y. M.; Long, H.; Wang, X. T.; Lin, B. P.; Zeng, T. H.; Sun, Y. M. Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2014, 2, 1060–1067.

30

Lin, J. D.; Hu, P.; Zhang, Y.; Fan, M. T.; He, Z. M.; Ngaw, C. K.; Loo, J. S. C.; Liao, D. W.; Tan, T. T. Y. Understanding the photoelectrochemical properties of a reduced graphene oxide-WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC Adv. 2013, 3, 9330–9336.

31

Wu, H. Y.; Xu, M.; Da, P. M.; Li, W. J.; Jia, D. S.; Zheng, G. F. WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys. Chem. Chem. Phys. 2013, 15, 16138–16142.

32

Su, Y. H.; Huang, S. H.; Kung, P. Y.; Shen, T. W.; Wang, W. L. Hydrogen generation of Cu2O nanoparticles/MnO–MnO2 nanorods heterojunction supported on sonochemical-assisted synthesized few-layer graphene in water-splitting photocathode. ACS Sustainable Chem. Eng. 2015, 3, 1965–1973.

33

Nielander, A. C.; Bierman, M. J.; Petrone, N.; Strandwitz, N. C.; Ardo, S.; Yang, F.; Hone, J.; Lewis, N. S. Photoelectrochemical behavior of n-Type Si(111) electrodes coated with a single layer of graphene. J. Am. Chem. Soc. 2013, 135, 17246–17249.

34

Xu, M.; Da, P. M.; Wu, H. Y.; Zhao, D. Y.; Zheng, G. F. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photo­electrochemical conversion. Nano Lett. 2012, 12, 1503–1508.

35

Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.

36

Hu, Z. F.; Lu, Y. L.; Liu, M. H.; Zhang, X. Y.; Cai, J. J. Crystalline red phosphorus for selective photocatalytic reduction of CO2 into CO. J. Mater. Chem. A 2021, 9, 338–348.

37

Li, L. J.; Hu, Z. F.; Yu, J. C. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem., Int. Ed. 2020, 59, 20538–20544.

38

Hu, Z. F.; Gong, J. B.; Ye, Z.; Liu, Y.; Xiao, X. D.; Yu, J. C. Cu(In, Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO. J. Catal. 2020, 384, 88–95.

39

Hu, Z. F.; Liu, W. W. Conversion of biomasses and copper into catalysts for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 51366–51373.

40

Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.; Hu, Z. F. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4. ACS Appl. Mater. Interfaces 2020, 12, 36128–36136.

41

Bachhuber, F.; Von Appen, J.; Dronskowski, R.; Schmidt, P.; Nilges, T.; Pfitzner, A.; Weihrich, R. Van der Waals interactions in selected allotropes of phosphorus. Z. Krist. Cryst. Mater. 2015, 230, 107–115.

42

Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal. B Environ. 2017, 218, 570–580.

43

Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.

44

Hu, Z. F.; Shen, Z. R.; Yu, J. C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment. Environ. Sci. Technol. 2017, 51, 7076–7083.

45

Nashalian, O.; Yaylayan, V. A. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia. Food Chem. 2016, 197, 489–495.

46

Shrestha, K.; De Meulenaer, B. Antioxidant activity of Maillard type reaction products between phosphatidylethanolamine and glucose. Food Chem. 2014, 161, 8–15.

47

Baccile, N.; Laurent, G.; Coelho, C.; Babonneau, F.; Zhao, L.; Titirici, M. M. Structural insights on nitrogen-containing hydrothermal carbon using solid-state magic angle spinning 13C and 15N nuclear magnetic resonance. J. Phys. Chem. C 2011, 115, 8976–8982.

48

Wohlgemuth, S. A.; Vilela, F.; Titirici, M. M.; Antonietti, M. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem. 2012, 14, 741–749.

49

Hu, Y. F.; Su, Y.; Huang, H. T.; Qian, Q. F.; Guan, Z. J.; Feng, J. Y.; Li, Z. S.; Zou, Z. G. Enhancement of photoelectrochemical performance in water oxidation over bismuth vanadate photoanodes by incorporation with reduced graphene oxide. ChemCatChem 2015, 7, 2979–2985.

50

Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photo­electrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607–2612.

51

Meng, F. K.; Li, J. T.; Cushing, S. K.; Bright, J.; Zhi, M. J.; Rowley, J. D.; Hong, Z. L.; Manivannan, A.; Bristow, A. D.; Wu, N. Q. Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 2013, 3, 746–751.

52

Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Y. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012, 12, 6464–6473.

53

Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.

54

Hu, Z. F.; Shen, Z. R.; Yu, J. C. Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation. Chem. Mater. 2016, 28, 564–572.

55

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

56

Zhang, Z.; Yates Jr, J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

57

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

58

Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2013, 3, 997–1003.

59

Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.

60

Hu, Z. F.; Liu, G.; Chen, X. Q.; Shen, Z. R.; Yu, J. C. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 2016, 26, 4445–4455.

61

Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in Solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.

62

Kennedy, J. H.; Frese, K. W. Photooxidation of water at alpha-Fe2O3 electrodes. J. Electrochem. Soc. 1978, 125, 709–714.

63

Jing, L.; Zhu, R. X.; Phillips, D. L.; Yu, J. C. Effective prevention of charge trapping in graphitic carbon nitride with nanosized red phosphorus modification for superior photo(electro)catalysis. Adv. Funct. Mater. 2017, 27, 1703484.

64

Yang, Y.; Forster, M.; Ling, Y. C.; Wang, G. M.; Zhai, T.; Tong, Y. X.; Cowan, A. J.; Li, Y. Acid treatment enables suppression of electron– hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 3403–3407.

File
12274_2021_3529_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2020
Revised: 15 April 2021
Accepted: 20 April 2021
Published: 16 July 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120058), the National Natural Science Foundation of China (No. 51902357), the Natural Science Foundation of Guangdong Province, China (No. 2019A1515012143), the Start-up Funds for High-Level Talents of Sun Yat-sen University (No. 38000-18841209), and the Fundamental Research Funds for the Central Universities (No. 19lgpy153). The theoretical calculation is supported by the National Supercomputer Center in Guangzhou and National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Return