Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Coupling two-dimention carbon materials like graphene on photodelectrode can achieve high-efficiency photoelectrochemical cells. Bottom-up synthesis of carbon-based two-dimensional materials in green media from simple molecules is very attractive but remains a challenge. Carbohydrate is an ideal precursor for the synthesis but previous report requires pyrolysis at high temperature (> 700 ℃). Herein, starting with glucose, we develop a low temperature (210 ℃) synthesis of carbonaceous nanosheets in aqueous solution of glucose. With the aid of ethylenediamine and Fe3+/Fe2+/Co2+/Ni2+ ions, the nanosheets can grow on hematite nanorod array with very close contact. Importantly, a metallic region is formed at the interface due to atom distribution distortion, which can promote the charge transfer. The activity can be greatly enhanced by about 500% due to fast charge transfer. This is much better than that prepared by physically or chemically mixing graphene and hematite (< 200%). The enhancement is mainly due to the deformation area between the nanosheets and the hematite. The effective hole diffusion length increases from 2 to 8 nm and lifetime of charge carrier also increases, as confirmed by ultrafast transient absorption spectra. This method provides more opportunity for simple, mild and cost-effective fabrication of carbon-based two-dimensional by bottom-up method.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.
Guo, H. L.; Su, P.; Kang, X. F.; Ning, S. K. Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 2013, 1, 2248–2255.
Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.
Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.
He, X.; Zheng, N. C.; Hu, R. T.; Hu, Z. F.; Yu, J. C. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments. Adv. Funct. Mater. 2021, 31, 2006505.
Bao, X. B.; Gong, Y. T.; Deng, J.; Wang, S. P.; Wang, Y. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res. 2017, 10, 1258–1267.
Su, D.; Wang, J.; Jin, H. Y.; Gong, Y. T.; Li, M. M.; Pang, Z. F.; Wang, Y. From "waste to gold": A one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J. Mater. Chem. A 2015, 3, 11756–11761.
Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.
Kuang, P. Y.; Sayed, M.; Fan, J. J.; Cheng, B.; Yu, J. G. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802.
Kuang, P. Y.; He, M.; Zou, H. Y.; Yu, J. G.; Fan, K. 0D/3D MoS2-NiS2/ N-doped graphene foam composite for efficient overall water splitting. Appl. Catal. B Environ. 2019, 254, 15–25.
Liu, N.; Kim, K.; Hsu, P. C.; Sokolov, A. N.; Yap, F. L.; Yuan, H. T.; Xie, Y. W.; Yan, H.; Cui, Y.; Hwang, H. Y. et al. Large-scale production of graphene nanoribbons from electrospun polymers. J. Am. Chem. Soc. 2014, 136, 17284–17291.
Lei, H.; Yan, T. T.; Wang, H.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J. Mater. Chem. A 2015, 3, 5934–5941.
Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689–9692.
Wang, X. B.; Zhang, Y. J.; Zhi, C. Y.; Wang, X.; Tang, D. M.; Xu, Y. B.; Weng, Q. H.; Jiang, X. F.; Mitome, M.; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905.
Latorre-Sanchez, M.; Primo, A.; Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew Chem., Int Ed. 2013, 52, 11813–11816.
Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2, 241–278.
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.
Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.
Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.
Sun, L.; Tian, C. G.; Li, M. T.; Meng, X. Y.; Wang, L.; Wang, R. H.; Yin, J.; Fu, H. G. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 2013, 1, 6462–6470.
Bao, L.; Li, T.; Chen, S.; Peng, C.; Li, L.; Xu, Q.; Chen, Y. S.; Ou, E. C.; Xu, W. J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 2017, 13, 8.
Shu, Y. Y.; Ohnishi, R.; Ichikawa, M. Pressurized dehydrocondensation of methane toward benzene and naphthalene on Mo/HZSM-5 catalyst: Optimization of reaction parameters and promotion by CO2 addition. J. Catal. 2002, 206, 134–142.
Rifat, A.; Mahon, M. F.; Weller, A. S. Dehydrogenation of cyclohexenes to cyclohexadienes by [(PPh3)2Rh]+. The isolation of an intermediate in the dehydrogenation of cyclohexane to benzene: Crystal structure of [(η4-C6H8)Rh(PPh3)2][closo-CB11H6Br6]. J. Organomet. Chem. 2003, 667, 1–4.
Song, P.; Zhang, X. Y.; Sun, M. X.; Cui, X. L.; Lin, Y. H. Graphene oxide modified TiO2 nanotube arrays: Enhanced visible light photoelectrochemical properties. Nanoscale 2012, 4, 1800–1804.
Zhang, X. F.; Zhang, B. Y.; Huang, D. K.; Yuan, H. L.; Wang, M. K.; Shen, Y. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon 2014, 80, 591–598.
Chae, S. Y.; Sudhagar, P.; Fujishima, A.; Hwang, Y. J.; Joo, O. S. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution. Phys. Chem. Chem. Phys. 2015, 17, 7714–7719.
Dai, Y. Q.; Sun, Y. B.; Yao, J.; Ling, D. D.; Wang, Y. M.; Long, H.; Wang, X. T.; Lin, B. P.; Zeng, T. H.; Sun, Y. M. Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2014, 2, 1060–1067.
Lin, J. D.; Hu, P.; Zhang, Y.; Fan, M. T.; He, Z. M.; Ngaw, C. K.; Loo, J. S. C.; Liao, D. W.; Tan, T. T. Y. Understanding the photoelectrochemical properties of a reduced graphene oxide-WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC Adv. 2013, 3, 9330–9336.
Wu, H. Y.; Xu, M.; Da, P. M.; Li, W. J.; Jia, D. S.; Zheng, G. F. WO3-reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion. Phys. Chem. Chem. Phys. 2013, 15, 16138–16142.
Su, Y. H.; Huang, S. H.; Kung, P. Y.; Shen, T. W.; Wang, W. L. Hydrogen generation of Cu2O nanoparticles/MnO–MnO2 nanorods heterojunction supported on sonochemical-assisted synthesized few-layer graphene in water-splitting photocathode. ACS Sustainable Chem. Eng. 2015, 3, 1965–1973.
Nielander, A. C.; Bierman, M. J.; Petrone, N.; Strandwitz, N. C.; Ardo, S.; Yang, F.; Hone, J.; Lewis, N. S. Photoelectrochemical behavior of n-Type Si(111) electrodes coated with a single layer of graphene. J. Am. Chem. Soc. 2013, 135, 17246–17249.
Xu, M.; Da, P. M.; Wu, H. Y.; Zhao, D. Y.; Zheng, G. F. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett. 2012, 12, 1503–1508.
Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.
Hu, Z. F.; Lu, Y. L.; Liu, M. H.; Zhang, X. Y.; Cai, J. J. Crystalline red phosphorus for selective photocatalytic reduction of CO2 into CO. J. Mater. Chem. A 2021, 9, 338–348.
Li, L. J.; Hu, Z. F.; Yu, J. C. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem., Int. Ed. 2020, 59, 20538–20544.
Hu, Z. F.; Gong, J. B.; Ye, Z.; Liu, Y.; Xiao, X. D.; Yu, J. C. Cu(In, Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO. J. Catal. 2020, 384, 88–95.
Hu, Z. F.; Liu, W. W. Conversion of biomasses and copper into catalysts for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 51366–51373.
Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.; Hu, Z. F. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4. ACS Appl. Mater. Interfaces 2020, 12, 36128–36136.
Bachhuber, F.; Von Appen, J.; Dronskowski, R.; Schmidt, P.; Nilges, T.; Pfitzner, A.; Weihrich, R. Van der Waals interactions in selected allotropes of phosphorus. Z. Krist. Cryst. Mater. 2015, 230, 107–115.
Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal. B Environ. 2017, 218, 570–580.
Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.
Hu, Z. F.; Shen, Z. R.; Yu, J. C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment. Environ. Sci. Technol. 2017, 51, 7076–7083.
Nashalian, O.; Yaylayan, V. A. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia. Food Chem. 2016, 197, 489–495.
Shrestha, K.; De Meulenaer, B. Antioxidant activity of Maillard type reaction products between phosphatidylethanolamine and glucose. Food Chem. 2014, 161, 8–15.
Baccile, N.; Laurent, G.; Coelho, C.; Babonneau, F.; Zhao, L.; Titirici, M. M. Structural insights on nitrogen-containing hydrothermal carbon using solid-state magic angle spinning 13C and 15N nuclear magnetic resonance. J. Phys. Chem. C 2011, 115, 8976–8982.
Wohlgemuth, S. A.; Vilela, F.; Titirici, M. M.; Antonietti, M. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem. 2012, 14, 741–749.
Hu, Y. F.; Su, Y.; Huang, H. T.; Qian, Q. F.; Guan, Z. J.; Feng, J. Y.; Li, Z. S.; Zou, Z. G. Enhancement of photoelectrochemical performance in water oxidation over bismuth vanadate photoanodes by incorporation with reduced graphene oxide. ChemCatChem 2015, 7, 2979–2985.
Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1, 2607–2612.
Meng, F. K.; Li, J. T.; Cushing, S. K.; Bright, J.; Zhi, M. J.; Rowley, J. D.; Hong, Z. L.; Manivannan, A.; Bristow, A. D.; Wu, N. Q. Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 2013, 3, 746–751.
Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Y. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012, 12, 6464–6473.
Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.
Hu, Z. F.; Shen, Z. R.; Yu, J. C. Covalent fixation of surface oxygen atoms on hematite photoanode for enhanced water oxidation. Chem. Mater. 2016, 28, 564–572.
Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.
Zhang, Z.; Yates Jr, J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.
Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.
Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2013, 3, 997–1003.
Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.
Hu, Z. F.; Liu, G.; Chen, X. Q.; Shen, Z. R.; Yu, J. C. Enhancing charge separation in metallic photocatalysts: A case study of the conducting molybdenum dioxide. Adv. Funct. Mater. 2016, 26, 4445–4455.
Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in Solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.
Kennedy, J. H.; Frese, K. W. Photooxidation of water at alpha-Fe2O3 electrodes. J. Electrochem. Soc. 1978, 125, 709–714.
Jing, L.; Zhu, R. X.; Phillips, D. L.; Yu, J. C. Effective prevention of charge trapping in graphitic carbon nitride with nanosized red phosphorus modification for superior photo(electro)catalysis. Adv. Funct. Mater. 2017, 27, 1703484.
Yang, Y.; Forster, M.; Ling, Y. C.; Wang, G. M.; Zhai, T.; Tong, Y. X.; Cowan, A. J.; Li, Y. Acid treatment enables suppression of electron– hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 3403–3407.