Journal Home > Volume 15 , Issue 1

Alkanoate-coated CdSe/CdS core/shell quantum dots (QDs) with near-unity photoluminescence (PL) quantum yield and mono-exponential PL decay dynamics are applied for studying quasi-stationary charge transfer from photo-excited QDs to quinone derivatives physically-adsorbed within the ligand monolayer of a QD. Though PL quenching efficiency due to electron transfer can be up to > 80%, transient PL and transient absorption spectra reveal that the charge transfer rate ranges from single-digit nanoseconds to sub-nanoseconds, which is ~ 3 orders of magnitude slower than that of static charge transfer and ~ 2 orders of magnitude faster than that of collisional charge transfer. The physically-adsorbed acceptors can slowly (500–1, 000 min dependent on the size of the quinone derivatives) desorb from the ligand monolayer after removal of the free acceptors. Contrary to collisional charge transfer, the efficiency of quasi-stationary charge transfer increases as the ligand length increases by providing additional adsorption compartments in the elongated hydrocarbon chain region. Because ligand monolayer commonly exists for a typical colloidal nanocrystal, the quasi-stationary charge transfer uncovered here would likely play an important role when colloidal nanocrystals are involved in photocatalysis, photovoltaic devices, and other applications related to photo-excitation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer

Show Author's information Lei Yang1Xiaoqi Zhou1Yuzhong Chen1Yufeng Qin2Xueqian Kong1Haiming Zhu1Chaodan Pu1,2( )Xiaogang Peng1( )
Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry Zhejiang University Hangzhou 310027 China
School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China

Abstract

Alkanoate-coated CdSe/CdS core/shell quantum dots (QDs) with near-unity photoluminescence (PL) quantum yield and mono-exponential PL decay dynamics are applied for studying quasi-stationary charge transfer from photo-excited QDs to quinone derivatives physically-adsorbed within the ligand monolayer of a QD. Though PL quenching efficiency due to electron transfer can be up to > 80%, transient PL and transient absorption spectra reveal that the charge transfer rate ranges from single-digit nanoseconds to sub-nanoseconds, which is ~ 3 orders of magnitude slower than that of static charge transfer and ~ 2 orders of magnitude faster than that of collisional charge transfer. The physically-adsorbed acceptors can slowly (500–1, 000 min dependent on the size of the quinone derivatives) desorb from the ligand monolayer after removal of the free acceptors. Contrary to collisional charge transfer, the efficiency of quasi-stationary charge transfer increases as the ligand length increases by providing additional adsorption compartments in the elongated hydrocarbon chain region. Because ligand monolayer commonly exists for a typical colloidal nanocrystal, the quasi-stationary charge transfer uncovered here would likely play an important role when colloidal nanocrystals are involved in photocatalysis, photovoltaic devices, and other applications related to photo-excitation.

Keywords: quantum dots, charge transfer, colloidal nanocrystals, ligand monolayer, physical adsorption

References(94)

1

Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

2

Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166.

3

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

4

Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.

5

Eperon, G. E.; Hörantner, M. T.; Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 2017, 1, 0095.

6

Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173.

7

Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J. W.; Lee, J. S. Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971.

8

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

9

Jiang, Y. S.; Weiss, E. A. Colloidal quantum dots as photocatalysts for triplet excited state reactions of organic molecules. J. Am. Chem. Soc. 2020, 142, 15219–15229.

10

Lu, H. P.; Huang, Z. Y.; Martinez, M. S.; Johnson, J. C.; Luther, J. M.; Beard, M. C. Transforming energy using quantum dots. Energy Environ. Sci. 2020, 13, 1347–1376.

11

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

12

Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628–17637.

13

Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

14

McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

15

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

16

Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399.

17

Ding, T. X.; Olshansky, J. H.; Leone, S. R.; Alivisatos, A. P. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 2015, 137, 2021–2029.

18

Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 2015, 10, 878–885.

19

Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev. 2017, 117, 712–757.

20

Huang, Z. Y.; Tang, M. L. Semiconductor nanocrystal light absorbers for photon upconversion. J. Phys. Chem. Lett. 2018, 9, 6198–6206.

21

Knowles, K. E.; Peterson, M. D.; McPhail, M. R.; Weiss, E. A. Exciton dissociation within quantum dot–organic complexes: Mechanisms, use as a probe of interfacial structure, and applications. J. Phys. Chem. C 2013, 117, 10229–10243.

22

Olshansky, J. H.; Ding, T. X.; Lee, Y. V.; Leone, S. R.; Alivisatos, A. P. Hole transfer from photoexcited quantum dots: The relationship between driving force and rate. J. Am. Chem. Soc. 2015, 137, 15567– 15575.

23

Zhu, H. M.; Yang, Y.; Wu, K. F.; Lian, T. Q. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 2016, 67, 259–281.

24

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.

25

Yang, Y.; Qin, H. Y.; Peng, X. G. Intramolecular entropy and size-dependent solution properties of nanocrystal–ligands complexes. Nano Lett. 2016, 16, 2127–2132.

26

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

27

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

28

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

29

Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

30

Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

31

Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 2012, 6, 2118–2127.

32

Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

33

De Nolf, K.; Capek, R. K.; Abe, S.; Sluydts, M.; Jang, Y.; Martins, J. C.; Cottenier, S.; Lifshitz, E.; Hens, Z. Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J. Am. Chem. Soc. 2015, 137, 2495–2505.

34

Wang, Y. H.; Pu, C. D.; Lei, H. R.; Qin, H. Y.; Peng, X. G. CdSe@CdS Dot@platelet nanocrystals: Controlled epitaxy, monoexponential decay of two-dimensional exciton, and nonblinking photoluminescence of single nanocrystal. J. Am. Chem. Soc. 2019, 141, 17617–17628.

35

Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

36

Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 2013, 135, 18536–18548.

37

Gao, Y.; Peng, X. G. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235.

38

Zhou, Y.; Wang, F. D.; Buhro, W. E. Large exciton energy shifts by reversible surface exchange in 2D Ⅱ–Ⅵ nanocrystals. J. Am. Chem. Soc. 2015, 137, 15198–15208.

39

Pu, C. D.; Peng, X. G. To battle surface traps on CdSe/CdS core/shell nanocrystals: Shell isolation versus surface treatment. J. Am. Chem. Soc. 2016, 138, 8134–8142.

40

Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420.

41

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. K. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

42

Nag, A.; Chung, D. S.; Dolzhnikov, D. S.; Dimitrijevic, N. M.; Chattopadhyay, S.; Shibata, T.; Talapin, D. V. Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids. J. Am. Chem. Soc. 2012, 134, 13604–13615.

43

Brown, P. R.; Kim, D.; Lunt, R. R.; Zhao, N.; Bawendi, M. G.; Grossman, J. C.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863– 5872.

44

Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

45

Pu, C. D.; Dai, X. L.; Shu, Y. F.; Zhu, M. Y.; Deng, Y. Z.; Jin, Y. Z.; Peng, X. G. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 2020, 11, 937.

46

Weiss, E. A. Designing the surfaces of semiconductor quantum dots for colloidal photocatalysis. ACS Energy Lett. 2017, 2, 1005–1013.

47

Kodaimati, M. S.; McClelland, K. P.; He, C.; Lian, S. C.; Jiang, Y. S.; Zhang, Z. Y.; Weiss, E. A. Viewpoint: Challenges in colloidal photocatalysis and some strategies for addressing them. Inorg. Chem. 2018, 57, 3659–3670.

48

Chen, J. S.; Li, M. X.; Cotlet, M. Nanoscale photoinduced charge transfer with individual quantum dots: Tunability through synthesis, interface design, and interaction with charge traps. ACS Omega 2019, 4, 9102–9112.

49

Vokhmintcev, K. V.; Samokhvalov, P. S.; Nabiev, I. Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 2016, 11, 189–211.

50

Morris-Cohen, A. J.; Peterson, M. D.; Frederick, M. T.; Kamm, J. M.; Weiss, E. A. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 2012, 3, 2840–2844.

51

Li, X.; Huang, Z. Y.; Zavala, R.; Tang, M. L. Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 2016, 7, 1955–1959.

52

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

53

Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed. Springer: Boston, 2006.

54

Kumpulainen, T.; Lang, B.; Rosspeintner, A.; Vauthey, E. Ultrafast elementary photochemical processes of organic molecules in liquid solution. Chem. Rev. 2017, 117, 10826–10939.

55

Matylitsky, V. V.; Dworak, L.; Breus, V. V.; Basché, T.; Wachtveitl, J. Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. J. Am. Chem. Soc. 2009, 131, 2424–2425.

56

Huang, J. E.; Huang, Z. Q.; Yang, Y.; Zhu, H. M.; Lian, T. Q. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J. Am. Chem. Soc. 2010, 132, 4858–4864.

57

Zhu, H. M.; Song, N. H.; Lian, T. Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core–shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 2010, 132, 15038–15045.

58

Morris-Cohen, A. J.; Frederick, M. T.; Cass, L. C.; Weiss, E. A. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a Cds quantum dot–viologen complex. J. Am. Chem. Soc. 2011, 133, 10146–10154.

59

Knowles, K. E.; Malicki, M.; Weiss, E. A. Dual-time scale photoinduced electron transfer from PbS quantum dots to a molecular acceptor. J. Am. Chem. Soc. 2012, 134, 12470–12473.

60

Lian, S. C.; Weinberg, D. J.; Harris, R. D.; Kodaimati, M. S.; Weiss, E. A. Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand. ACS Nano 2016, 10, 6372–6382.

61

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

62

Page, R. C.; Espinobarro-Velazquez, D.; Leontiadou, M. A.; Smith, C.; Lewis, E. A.; Haigh, S. J.; Li, C.; Radtke, H.; Pengpad, A.; Bondino, F. et al. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots. Small 2015, 11, 1548–1554.

63

Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc. 2019, 141, 6448–6452.

64

Song, N. H.; Zhu, H. M.; Jin, S. Y.; Zhan, W.; Lian, T. Q. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 2011, 5, 613–621.

65

Li, X.; Slyker, L. W.; Nichols, V. M.; Pau, G. S. H.; Bardeen, C. J.; Tang, M. L. Ligand binding to distinct sites on nanocrystals affecting energy and charge transfer. J. Phys. Chem. Lett. 2015, 6, 1709–1713.

66

Yan, C.; Weinberg, D.; Jasrasaria, D.; Kolaczkowski, M. A.; Liu, Z. J.; Philbin, J. P.; Balan, A. D.; Liu, Y.; Schwartzberg, A. M.; Rabani, E. et al. Uncovering the role of hole traps in promoting hole transfer from multiexcitonic quantum dots to molecular acceptors. ACS Nano 2021, 15, 2281–2291.

67

Knowles, K. E.; Tagliazucchi, M.; Malicki, M.; Swenson, N. K.; Weiss, E. A. Electron transfer as a probe of the permeability of organic monolayers on the surfaces of colloidal PbS quantum dots. J. Phys. Chem. C 2013, 117, 15849–15857.

68

Aruda, K. O.; Bohlmann Kunz, M.; Tagliazucchi, M.; Weiss, E. A. Temperature-dependent permeability of the ligand shell of PbS quantum dots probed by electron transfer to benzoquinone. J. Phys. Chem. Lett. 2015, 6, 2841–2846.

69

Weinberg, D. J.; He, C.; Weiss, E. A. Control of the redox activity of quantum dots through introduction of fluoroalkanethiolates into their ligand shells. J. Am. Chem. Soc. 2016, 138, 2319–2326.

70

Koch, M.; Rosspeintner, A.; Angulo, G.; Vauthey, E. Bimolecular photoinduced electron transfer in imidazolium-based room-temperature ionic liquids is not faster than in conventional solvents. J. Am. Chem. Soc. 2012, 134, 3729–3736.

71

Rosspeintner, A.; Koch, M.; Angulo, G.; Vauthey, E. Spurious observation of the Marcus inverted region in bimolecular photoinduced electron transfer. J. Am. Chem. Soc. 2012, 134, 11396–11399.

72

Lakowicz, J. R.; Joshi, N. B.; Johnson, M. L.; Szmacinski, H.; Gryczynski, I. Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays. J. Biol. Chem. 1987, 262, 10907–10910.

73

Pang, Z. F.; Zhang, J.; Cao, W. C.; Kong, X. Q.; Peng, X. G. Partitioning surface ligands on nanocrystals for maximal solubility. Nat. Commun. 2019, 10, 2454.

74

Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.

75

Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 2010, 132, 10195– 10201.

76

Boldt, K.; Jander, S.; Hoppe, K.; Weller, H. Characterization of the organic ligand shell of semiconductor quantum dots by fluorescence quenching experiments. ACS Nano 2011, 5, 8115–8123.

77

Hadar, I.; Abir, T.; Halivni, S.; Faust, A.; Banin, U. Size-dependent ligand layer dynamics in semiconductor nanocrystals probed by anisotropy measurements. Angew. Chem. , Int. Ed. 2015, 54, 12463– 12467.

78

De Nolf, K.; Cosseddu, S. M.; Jasieniak, J. J.; Drijvers, E.; Martins, J. C.; Infante, I.; Hens, Z. Binding and packing in two-component colloidal quantum dot ligand shells: Linear versus branched carboxylates. J. Am. Chem. Soc. 2017, 139, 3456–3464.

79

De Roo, J.; Yazdani, N.; Drijvers, E.; Lauria, A.; Maes, J.; Owen, J. S.; Van Driessche, I.; Niederberger, M.; Wood, V.; Martins, J. C. et al. Probing solvent–ligand interactions in colloidal nanocrystals by the NMR line broadening. Chem. Mater. 2018, 30, 5485–5492.

80

Zhou, J. H.; Zhu, M. Y.; Meng, R. Y.; Qin, H. Y.; Peng, X. G. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 2017, 139, 16556–16567.

81

Hens, Z.; Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221.

82

Chen, P. E.; Anderson, N. C.; Norman, Z. M.; Owen, J. S. Tight binding of carboxylate, phosphonate, and carbamate anions to stoichiometric CdSe nanocrystals. J. Am. Chem. Soc. 2017, 139, 3227–3236.

83

Zhang, J.; Zhang, H. B.; Cao, W. C.; Pang, Z. F.; Li, J. Z.; Shu, Y. F.; Zhu, C. Q.; Kong, X. Q.; Wang, L. J.; Peng, X. G. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 15675–15683.

84

Li, J. Z.; Chen, J. L.; Shen, Y. M.; Peng, X. G. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Res. 2018, 11, 3991–4004.

85

Maity, P.; Debnath, T.; Ghosh, H. N. Ultrafast charge carrier delocalization in CdSe/CdS quasi-type Ⅱ and CdS/CdSe inverted type I core–shell: A structural analysis through carrier-quenching study. J. Phys. Chem. C 2015, 119, 26202–26211.

86

Li, X.; Nichols, V. M.; Zhou, D. P.; Lim, C.; Pau, G. S. H.; Bardeen, C. J.; Tang, M. L. Observation of multiple, identical binding sites in the exchange of carboxylic acid ligands with CdS nanocrystals. Nano Lett. 2014, 14, 3382–3387.

87

Klimov, V. I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673.

88

Tisdale, W. A.; Zhu, X. Y. Artificial atoms on semiconductor surfaces. Proc. Natl. Acad. Sci. USA 2011, 108, 965–970.

89

Dorfman, R. C.; Fayer, M. D. The influence of diffusion on photoinduced electron transfer and geminate recombination. J. Chem. Phys. 1992, 96, 7410–7422.

90

Rosspeintner, A.; Lang, B.; Vauthey, E. Ultrafast photochemistry in liquids. Annu. Rev. Phys. Chem. 2013, 64, 247–271.

91

Morris-Cohen, A. J.; Vasilenko, V.; Amin, V. A.; Reuter, M. G.; Weiss, E. A. Model for adsorption of ligands to colloidal quantum dots with concentration-dependent surface structure. ACS Nano 2012, 6, 557–565.

92

Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 2012, 134, 20705–20712.

93

Lv, L. L.; Li, J. Z.; Wang, Y. H.; Shu, Y. F.; Peng, X. G. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth. J. Am. Chem. Soc. 2020, 142, 19926–19935.

94

Wu, D. H.; Chen, A. D.; Johnson, C. S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. A 1995, 115, 260–264.

File
12274_2021_3528_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2021
Revised: 12 April 2021
Accepted: 15 April 2021
Published: 24 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21902142) and the Key Research and Development Program of Zhejiang Province (No. 2020C01001).

Return