Journal Home > Volume 15 , Issue 1

Biology systems harvest solar energy to regulate ions and molecules precisely across cell membrane that is essential to maintain their life sustainability. Recently, artificial light-driven directional ion transport through graphene oxide membranes has been established, where the membrane converts light power into a transmembrane motive force. Herein, we report a silver nanoparticles decorated graphene oxide membranes for enhanced photo-driven ionic transport. Asymmetric light stimulated charge carrier dynamics, such as advanced light absorption efficiency, extended lifetime and efficient separation of photo-excited charge carriers, are account for the ion-driven force enhancement. Based on metal nanoparticles decoration, the concept of the guest-interactions of plasmon-enhanced photo-driven ion transport in two-dimentional layered membranes will stimulate broad researches in sensing, energy storage and conversion and water treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced photo-driven ion pump through silver nanoparticles decorated graphene oxide membranes

Show Author's information Yaping Feng1,2,§Haoyu Dai1,§Yi Zhang3Jianjun Chen1Fengxiang Chen4Lei Jiang1( )
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
University of Chinese Academy of Sciences Beijing 100190 China
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology Engineering Research Center of Beijing Beijing University of Technology Beijing 100124 China
Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430200 China

§ Yaping Feng and Haoyu Dai contributed equally to this work.

Abstract

Biology systems harvest solar energy to regulate ions and molecules precisely across cell membrane that is essential to maintain their life sustainability. Recently, artificial light-driven directional ion transport through graphene oxide membranes has been established, where the membrane converts light power into a transmembrane motive force. Herein, we report a silver nanoparticles decorated graphene oxide membranes for enhanced photo-driven ionic transport. Asymmetric light stimulated charge carrier dynamics, such as advanced light absorption efficiency, extended lifetime and efficient separation of photo-excited charge carriers, are account for the ion-driven force enhancement. Based on metal nanoparticles decoration, the concept of the guest-interactions of plasmon-enhanced photo-driven ion transport in two-dimentional layered membranes will stimulate broad researches in sensing, energy storage and conversion and water treatment.

Keywords: silver nanoparticles, photocurrent, nanofluidics, ion pump

References(37)

1

Gadsby, D. C. Ion channels versus ion pumps: The principal difference, in principle. Nat. Rev. Mol. Cell Biol. 2009, 10, 344–352.

2

Krause, G. H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Phys. Plant Mol. Biol. 1991, 42, 313–349.

3

Heberle, J. Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta. 2000, 1458, 135–147.

4

Lu, K.; Shen, D. L.; Dong, S. P.; Chen, C. Y.; Lin, S. J.; Lu, S.; Xing, B. S.; Mao, L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020, 13, 3198–3205.

5

Steinberg-Yfrach, G.; Rigaud, J. L.; Durantini, E. N.; Moore, A. L.; Gust, D.; Moore, T. A. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 1998, 392, 479–482.

6

Tributsch, H. Light driven proton pumps. Ionics 2000, 6, 161–171.

7

Bhosale, S.; Sisson, A. L.; Talukdar, P.; Fürstenberg, A.; Banerji, N.; Vauthey, E.; Bollot, G.; Mareda, J.; Röger, C.; Würthner, F. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 2006, 313, 84–86.

8

Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

9

Bennett, I. M.; Farfano, H. M. V.; Bogani, F.; Primak, A.; Liddell, P. A.; Otero, L.; Sereno, L.; Silber, J. J.; Moore, A. L.; Moore, T. A. et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 2002, 420, 398–401.

10

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

11

Anothumakkool, B.; Guyomard, D.; Gaubicher, J.; Madec, L. Interest of molecular functionalization for electrochemical storage. Nano Res. 2017, 10, 4175–4200.

12

Yang, J. L.; Liu, P. C.; Li, L. S.; Tang, Z. Y. Light-driven active ion transport. Chem. –Eur. J. 2020, 26, 13748–13753.

13

Yang, J. L.; Zhang, X. P.; Chen, F. X.; Jiang, L. Geometry modulation of ion diffusion through layered asymmetric graphene oxide membranes. Chem. Commun. 2019, 55, 3140–3143.

14

Yeh, C. N.; Raidongia, K.; Shao, J. J.; Yang, Q. H.; Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7, 166–170.

15

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

16

Coleman, M.; Tang, X. W. Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes. Nano Res. 2015, 8, 1128–1138.

17

Lohrasebi, A.; Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018, 11, 2229–2236.

18

Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

19

Feng, Y. P.; Dai, H. Y.; Chen, J. J.; Kong, X.; Yang, J. L.; Jiang, L. Geometric structure-guided photo-driven ion current through asymmetric graphene oxide membranes. J. Mater. Chem. A 2019, 7, 20182–20186.

20

Gengler, R. Y. N.; Badali, D. S.; Zhang, D. F.; Dimos, K.; Spyrou, K.; Gournis, D.; Miller, R. J. D. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 2013, 4, 2560.

21

Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X. Y. Hot-electron transfer from semiconductor nanocrystals. Science 2010, 328, 1543–1547.

22

Li, X. Y.; Lao, J. C.; Li, G. J.; Song, J.; Luo, J. Y. A bio-inspired transpiration ion pump based on MXene. Mater. Chem. Front. 2020, 4, 3361–3367.

23

Berini, P.; De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics 2012, 6, 16–24.

24

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

25

Mueller, N. S.; Okamura, Y.; Vieira, B. G. M.; Juergensen, S.; Lange, H.; Barros, E. B.; Schulz, F.; Reich, S. Deep strong light–matter coupling in plasmonic nanoparticle crystals. Nature 2020, 583, 780–784.

26

Liang, H. C.; Liu, X. Y.; Gao, D. L.; Ni, J. F.; Li, Y. Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Res. 2017, 10, 3690–3697.

27

Lee, K. J.; Park, C.; Jin, H. J.; Shin, G. H.; Choi, S. Y. Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time. Nano Res. 2021, 14, 1305–1310.

28

Lim, S. P.; Pandikumar, A.; Lim, H. N.; Ramaraj, R.; Huang, N. M. Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci. Rep. 2015, 5, 11922.

29

Ferry, V. E.; Munday, J. N.; Atwater, H. A. Design considerations for plasmonic photovoltaics. Adv. Mater. 2010, 22, 4794–4808.

30

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

31

Ma, J. Z.; Zhang, J. T.; Xiong, Z. G.; Yong, Y.; Zhao, X. S. Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J. Mater. Chem. 2011, 21, 3350–3352.

32

Cheng, C.; Jiang, G. P.; Garvey, C. J.; Wang, Y. Y.; Simon, G. P.; Liu, J. Z.; Li, D. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2016, 2, e1501272.

33

Yu, W. J.; Vu, Q. A.; Oh, H.; Nam, H. G.; Zhou, H. L.; Cha, S.; Kim, J. Y.; Carvalho, A.; Jeong, M.; Choi, H. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 2016, 7, 13278.

34

Tang, Q.; Li, L.; Song, Y.; Liu, Y.; Li, H.; Xu, W.; Liu, Y.; Hu, W.; Zhu, D. Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater. 2007, 19, 2624–2628.

35

Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.

36

Ghosh, S.; Sarker, B. K.; Chunder, A.; Zhai, L.; Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 2010, 96, 163109.

37

Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

File
12274_2021_3527_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2021
Revised: 12 April 2021
Accepted: 15 April 2021
Published: 29 May 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially funded by the National Natural Science Foundation of China (No. 51603211) and the 111 Project (No. B14009).

Return