Journal Home > Volume 15 , Issue 1

A facile, gram-scale and sustainable approach has been established for the synthesis of single-atomic-site iron on N-doped carbon (FeSA@NC-20A) via the pyrolysis of aniline modified FeZn-ZIFs, in which the synthesis of zeolitic imidazolate frameworks (ZIFs) can be accomplished in water at room temperature, and no acid etching is required. The as-synthesized catalyst exhibits better performance on the chemoselective hydrogenation of nitroarenes with a broad substrate scope (turnover frequency (TOF) up to 1, 727 h-1, 23 examples) than most of previously reported works. Based on high-angle annular dark field scanning transmission microscopy (HAADF-STEM) images in combination with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron spin resonance (ESR), and Mössbauer spectroscopy, Fe is dispersed as single atoms via forming FeNx (x = 4–6). This work not only determines the active sites of FeSA@NC-20A for hydrogenation (FeN4), but also proposes tentative pathways for both N–H activation of hydrazine and the reduction of nitroarene on FeN4 site, both of which are the key steps for the hydrogenation of nitroarenes. In addition, this catalyst shows excellent stability, and no significant activity degradation is observed when recycling for 10 times or restoring in air for 2 months.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes

Show Author's information Guoping Lu1,§Kangkang Sun1,§Yamei Lin3Qixuan Du1Jiawei Zhang4Kui Wang2( )Pengcheng Wang1( )
School of Chemical Engineering Nanjing University of Science & Technology Nanjing 210094 China
Institute of Chemical Industry of Forest Products Chinese Academy of Forestry National Engineering Laboratory for Biomass Chemical Utilization Nanjing 210042 China
School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210032 China
College of Materials Science and Engineering Hunan University Changsha 410082 China

§ Guoping Lu and Kangkang Sun contributed equally to this work.

Abstract

A facile, gram-scale and sustainable approach has been established for the synthesis of single-atomic-site iron on N-doped carbon (FeSA@NC-20A) via the pyrolysis of aniline modified FeZn-ZIFs, in which the synthesis of zeolitic imidazolate frameworks (ZIFs) can be accomplished in water at room temperature, and no acid etching is required. The as-synthesized catalyst exhibits better performance on the chemoselective hydrogenation of nitroarenes with a broad substrate scope (turnover frequency (TOF) up to 1, 727 h-1, 23 examples) than most of previously reported works. Based on high-angle annular dark field scanning transmission microscopy (HAADF-STEM) images in combination with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron spin resonance (ESR), and Mössbauer spectroscopy, Fe is dispersed as single atoms via forming FeNx (x = 4–6). This work not only determines the active sites of FeSA@NC-20A for hydrogenation (FeN4), but also proposes tentative pathways for both N–H activation of hydrazine and the reduction of nitroarene on FeN4 site, both of which are the key steps for the hydrogenation of nitroarenes. In addition, this catalyst shows excellent stability, and no significant activity degradation is observed when recycling for 10 times or restoring in air for 2 months.

Keywords: N-doped carbon, zeolitic imidazolate framework, single-atom-site iron, the hydrogenation of nitroarene, drug synthesis

References(62)

1

Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

2

Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.

3

Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B: Environ. 2018, 227, 386–408.

4

Burawoy, A.; Critchley, J. P. Electronic spectra of organic molecules and their interpretation—V: Effect of terminal groups containing multiple bonds on the K-bands of conjugated systems. Tetrahedron 1959, 5, 340–351.

5

Isley, N. A.; Linstadt, R. T. H.; Kelly, S. M.; Gallou, F.; Lipshutz, B. H. Nucleophilic aromatic substitution reactions in water enabled by micellar catalysis. Org. Lett. 2015, 17, 4734–4737.

6

Yang, J.; Zhu, Y. Y.; Fan, M. Y.; Sun, X.; Wang, W. D.; Dong, Z. P. Ultrafine palladium nanoparticles confined in core-shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. J. Colloid Interf. Sci. 2019, 554, 157–165.

7

Wang, L.; Guan, E. J.; Zhang, J.; Yang, J. H.; Zhu, Y. H.; Han, Y.; Yang, M.; Cen, C.; Fu, G.; Gates, B. C. et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat. Commun. 2018, 9, 1362.

8

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

9

Corma, A.; Serna, P.; Concepción, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753.

10

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

11

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

12

Pirnot, M. T.; Wang, Y. M.; Buchwald, S. L. Copper hydride catalyzed hydroamination of alkenes and alkynes. Angew. Chem. , Int. Ed. 2016, 55, 48–57.

13

Tian, H.; Liu, X. Y.; Dong, L. B.; Ren, X. M.; Liu, H.; Price, C. A. H.; Li, Y.; Wang, G. X.; Yang, Q. H.; Liu, J. Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv. Sci. 2019, 6, 1900807.

14

Feng, J.; Handa, S.; Gallou, F.; Lipshutz, B. H. Safe and selective nitro group reductions catalyzed by sustainable and recyclable Fe/ppm Pd nanoparticles in water at room temperature. Angew. Chem. , Int. Ed. 2016, 55, 8979–8983.

15

Pang, S. F.; Zhang, Y. J.; Su, Q.; Liu, F. F.; Xie, X.; Duan, Z. Y.; Zhou, F.; Zhang, P.; Wang, Y. B. Superhydrophobic nickel/carbon core–shell nanocomposites for the hydrogen transfer reactions of nitrobenzene and N-heterocycles. Green Chem. 2020, 22, 1996–2010.

16

Ai, Y. J.; Hu, Z. N.; Liu, L.; Zhou, J. J.; Long, Y.; Li, J. F.; Ding, M. Y.; Sun, H. B.; Liang, Q. L. Magnetically hollow Pt nanocages with ultrathin walls as a highly integrated nanoreactor for catalytic transfer hydrogenation reaction. Adv. Sci. 2019, 6, 1802132.

17

Zhang, C. F.; Lu, J. M.; Li, M. R.; Wang, Y. H.; Zhang, Z.; Chen, H. J.; Wang, F. Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst. Green Chem. 2016, 18, 2435–2442.

18

Kumbhar, P. S.; Sanchez-Valente, J.; Millet, J. M. M.; Figueras, F. Mg–Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate. J. Catal. 2000, 191, 467–473.

19

Cantillo, D.; Baghbanzadeh, M.; Kappe, C. O. In situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method. Angew. Chem., Int. Ed. 2012, 51, 10190–10193.

20

Jagadeesh, R. V.; Wienhöfer, G.; Westerhaus, F. A.; Surkus, A. E.; Pohl, M. M.; Junge, H.; Junge, K.; Beller, M. Efficient and highly selective iron-catalyzed reduction of nitroarenes. Chem. Commun. 2011, 47, 10972–10974.

21

Reddy, P. L.; Tripathi, M.; Arundhathi, R.; Rawat, D. S. Chemoselective hydrazine-mediated transfer hydrogenation of nitroarenes by Co3O4 nanoparticles immobilized on an Al/Si-mixed oxide support. Chem. Asian J. 2017, 12, 785–791.

22

Jiang, C. J.; Shang, Z. Y.; Liang, X. H. Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 2015, 5, 4814–4818.

23

Chen, S.; Ling, L. L.; Jiang, S. F.; Jiang, H. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chem. 2020, 22, 5730–5741.

24

Shi, Q.; Lu, R. W.; Lu, L. H.; Fu, X. M.; Zhao, D. F. Efficient reduction of nitroarenes over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite precursor. Adv. Synth. Catal. 2007, 349, 1877–1881.

25

Li, Y.; Zhou, Y. X.; Ma, X.; Jiang, H. L. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chem. Commun. 2016, 52, 4199–4202.

26

Yun, R. R.; Hong, L. R.; Ma, W. J.; Jia, W. G.; Liu, S. J.; Zheng, B. S. Fe/Fe2O3@N-dopped porous carbon: A high-performance catalyst for selective hydrogenation of nitro compounds. ChemCatChem 2019, 11, 724–728.

27

Yun, R. R.; Zhan, F. Y.; Li, N.; Zhang, B. B.; Ma, W. J.; Hong, L. R.; Sheng, T.; Du, L. T.; Zheng, B. S.; Liu, S. J. Fe single atoms and Fe2O3 clusters liberated from N-doped polyhedral carbon for chemoselective hydrogenation under mild conditions. ACS Appl. Mater. Interfaces 2020, 12, 34122–34129.

28

Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.

29

Sun, K. K.; Li, D. D.; Lu, G. P.; Cai, C. Hydrogen auto-transfer synthesis of quinoxalines from o-nitroanilines and biomass-based diols catalyzed by MOF-derived N, P Co-doped cobalt catalysts. ChemCatChem 2021, 13, 373–381.

30

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

31

Zhang, B.; Fan, T. J.; Xie, N.; Nie, G. H.; Zhang, H. Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv. Sci. 2019, 6, 1901787.

32

Lin, Y.; Yu, J.; Zhang, X.; Fang, J.; Lu, G. -P.; Huang, H. Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. Chin. Chem. Lett. 2021, doi: 10.1016/ j.cclet.2021.06.045.

33

Sun, K.; Shan, H.; Lu, G. P.; Cai, C.; Beller, M. Synthesis of N-heterocycles via oxidant-free dehydrocyclization of alcohols using heterogeneous catalysts. Angew. Chem., Int. Ed. 2021, doi: 10.1002/anie.202104979.

34

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

35

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

36

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

37

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

38

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, in press, DOI: 10.1007/s12274-020-3244-4.

39

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

40

Cheong, W. C.; Yang, W. J.; Zhang, J.; Li, Y.; Zhao, D.; Liu, S. J.; Wu, K. L.; Liu, Q. G.; Zhang, C.; Wang, D. S. et al. Isolated iron single-atomic site-catalyzed chemoselective transfer hydrogenation of nitroarenes to arylamines. ACS Appl. Mater. Interfaces 2019, 11, 33819–33824.

41

Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

42

Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

43

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2017, 56, 6937–6941.

44

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem. , Int. Ed. 2020, 59, 2688–2694.

45

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem. , Int. Ed. 2019, 58, 18971–18980.

46

Liu, D. B.; Wu, C. Q.; Chen, S. M.; Ding, S. Q.; Xie, Y. F.; Wang, C. D.; Wang, T.; Haleem, Y. A.; ur Rehman, Z.; Sang, Y. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018, 11, 2217–2228.

47

Sun, K. K.; Chen, S. J.; Zhang, J. W.; Lu, G. P.; Cai, C. Cobalt nanoparticles embedded in N-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for one-pot selective oxidative depolymerization of lignin. ChemCatChem 2019, 11, 1264–1271.

48

Sun, K. K.; Chen, S. J.; Li, Z. L.; Lu, G. P.; Cai, C. Synthesis of a ZIF-derived hollow yolk–shell Co@CN catalyst for the oxidative esterification of 5-hydroxymethylfurfural. Green Chem. 2019, 21, 1602–1608.

49

Sun, K. K.; Sun, J. L.; Lu, G. P.; Cai, C. Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water. Green Chem. 2019, 21, 4334–4340.

50

Rui, T.; Lu, G. P.; Zhao, X.; Cao, X.; Chen, Z. The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chin. Chem. Lett. 2021, 32, 685–690.

51

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

52

Zhu, Y. S.; Zhang, B. S.; Liu, X.; Wang, D. W.; Su, D. S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2014, 53, 10673–10677.

53

Choi, G. J.; Knowles, R. R. Catalytic alkene carboaminations enabled by oxidative proton-coupled electron transfer. J. Am. Chem. Soc. 2015, 137, 9226–9229.

54

Ma, Z. M.; Song, T.; Yuan, Y. Z.; Yang, Y. Synergistic catalysis on Fe–Nx sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes. Chem. Sci. 2019, 10, 10283–10289.

55

Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

56

Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 2019, 9, 6681–6691.

57

Hammes-Schiffer, S. Introduction: Proton-coupled electron transfer. Chem. Rev. 2010, 110, 6937–6938.

58

Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K. H.; Reinemer, P.; Perzborn, E. Discovery of the novel antithrombotic agent 5-chloro-N-(1(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1, 3-oxazolidin-5-yl I methyl)thiophene-2-carboxamide (BAY 59–7939): An oral, direct factor Xa inhibitor. J. Med. Chem. 2005, 48, 5900–5908.

59

Russell, M. G.; Jamison, T. F. Seven-step continuous flow synthesis of linezolid without intermediate purification. Angew. Chem. , Int. Ed. 2019, 58, 7678–7681.

60

Lu, G. P.; Cai, C. An odorless, one-pot synthesis of nitroaryl thioethers via SNAr reactions through the in situ generation of S-alkylisothiouronium salts. RSC Adv. 2014, 4, 59990–59996.

61

Yung-Chih Kuo, Y. -C.; Tsai, H. -C.; Rajesh, R. Glutathione liposomes carrying ceftriaxone, fk506, and nilotinib to control overexpressed dopamine markers and apoptotic factors in neurons. ACS Biomater. Sci. Eng. 2021, 7, 3242–3255.

62

Lipshutz, B. H.; Isley, N. A.; Fennewald, J. C.; Slack, E. D. On the way towards greener transition-metal-catalyzed processes as quantified by E factors. Angew. Chem. , Int. Ed. 2013, 52, 10952–10958.

File
12274_2021_3526_MOESM1_ESM.pdf (8.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2021
Revised: 13 April 2021
Accepted: 15 April 2021
Published: 28 July 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We gratefully acknowledge the Fundamental Research Funds for the Central Universities (No. 30920021120), the Key Laboratory of Biomass Energy and Material, Jiangsu Province (No. JSBEM201912), the National Natural Science Foundation of China (No. 21905089), and the Chinese Postdoctoral Science Foundation (No. 2019M662775) for financial support.

Return