Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bimetallic nanoparticles are often superior candidates for a wide range of technological and biomedical applications owing to their enhanced catalytic, optical, and magnetic properties, which are often better than their monometallic counterparts. Most of their properties strongly depend on their chemical composition, crystallographic structure, and phase distribution. However, little is known of how their crystal structure, on the nanoscale, transforms over time at elevated temperatures, even though this knowledge is highly relevant in case nanoparticles are used in, e.g., high-temperature catalysis. Au–Fe is a promising bimetallic system where the low-cost and magnetic Fe is combined with catalytically active and plasmonic Au. Here, we report on the in situ temporal evolution of the crystalline ordering in Au–Fe nanoparticles, obtained from a modern laser ablation in liquids synthesis. Our in-depth analysis, complemented by dedicated atomistic simulations, includes a detailed structural characterization by X-ray diffraction and transmission electron microscopy as well as atom probe tomography to reveal elemental distributions down to a single atom resolution. We show that the Au–Fe nanoparticles initially exhibit highly complex internal nested nanostructures with a wide range of compositions, phase distributions, and size-depended microstrains. The elevated temperature induces a diffusion-controlled recrystallization and phase merging, resulting in the formation of a single face-centered-cubic ultrastructure in contact with a body-centered cubic phase, which demonstrates the metastability of these structures. Uncovering these unique nanostructures with nested features could be highly attractive from a fundamental viewpoint as they could give further insights into the nanoparticle formation mechanism under non-equilibrium conditions. Furthermore, the in situ evaluation of the crystal structure changes upon heating is potentially relevant for high-temperature process utilization of bimetallic nanoparticles, e.g., during catalysis.
Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202.
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.
Duan, M. B.; Jiang, L. B.; Zeng, G. M.; Wang, D. B.; Tang, W. W.; Liang, J.; Wang, H.; He, D.; Liu, Z. F.; Tang, L. Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Appl. Mater. Today 2020, 19, 100564.
Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337–1343.
Jaegers, N. R.; Mueller, K. T.; Wang, Y.; Hu, J. Z. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc. Chem. Res. 2020, 53, 611–619.
Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.
Askeland, D. R. Atom movement in materials. In The Science and Engineering of Materials. Askeland, D. R., Ed.; Springer: Boston, MA, 1996; pp 111–137.
Carabineiro, S. A. C. Supported gold nanoparticles as catalysts for the oxidation of alcohols and alkanes. Front. Chem. 2019, 7, 702.
Oezaslan, M.; Hasché, F.; Strasser, P. In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem. Mater. 2011, 23, 2159–2165.
Sarker, S. I.; Nakamura, T.; Kameoka, S.; Hayasaka, Y.; Yin, S.; Sato, S. Enhanced catalytic activity of inhomogeneous Rh-based solid-solution alloy nanoparticles. RSC Adv. 2019, 9, 38882–38890.
Cao, A. M.; Veser, G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. Nat. Mater. 2010, 9, 75–81.
Sun, K.; Cheng, T.; Wu, L. N.; Hu, Y. F.; Zhou, J. G.; Maclennan, A.; Jiang, Z. H.; Gao, Y. Z.; Goddard III, W. A.; Wang, Z. J. Ultrahigh mass activity for carbon dioxide reduction enabled by gold–iron core–shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608–15611.
Vassalini, I.; Borgese, L.; Mariz, M.; Polizzi, S.; Aquilanti, G.; Ghigna, P.; Sartorel, A.; Amendola, V.; Alessandri, I. Enhanced electrocatalytic oxygen evolution in Au–Fe nanoalloys. Angew. Chem., Int. Ed. 2017, 56, 6589–6593.
Tang, H. L.; Wei, J. K.; Liu, F.; Qiao, B. T.; Pan, X. L.; Li, L.; Liu, J. Y.; Wang, J. H.; Zhang, T. Strong metal–support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56–59.
Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.
Fang, Z. Y.; Zhen, Y. R.; Neumann, O.; Polman, A.; García de Abajo, F. J.; Nordlander, P.; Halas, N. J. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 2013, 13, 1736–1742.
Al Soubaihi, R. M.; Saoud, K. M.; Dutta, J. Critical review of low-temperature CO oxidation and hysteresis phenomenon on heterogeneous catalysts. Catalysts 2018, 8, 660.
Martirez, J. M. P.; Carter, E. A. Thermodynamic constraints in using AuM (M = Fe, Co, Ni, and Mo) alloys as N2 dissociation catalysts: Functionalizing a plasmon-active metal. ACS Nano 2016, 10, 2940– 2949.
Amendola, V.; Meneghetti, M.; Bakr, O. M.; Riello, P.; Polizzi, S.; Anjum, D. H.; Fiameni, S.; Arosio, P.; Orlando, T.; de Julian Fernandez, C. Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 2013, 5, 5611–5619.
Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.
Amendola, V.; Scaramuzza, S.; Litti, L.; Meneghetti, M.; Zuccolotto, G.; Rosato, A.; Nicolato, E.; Marzola, P.; Fracasso, G.; Anselmi, C. et al. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 2014, 10, 2476–2486.
Bian, B.; Hirotsu, Y.; Sato, K.; Ohkubo, T.; Makino, A. Structures and magnetic properties of oriented Fe/Au and Fe/Pt nanoparticles on α-Al2O3. J. Electron. Microsc. 1999, 48, 753–759.
Pham, T. T. H.; Cao, C.; Sim, S. J. Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J. Magn. Magn. Mater. 2008, 320, 2049–2055.
Torresan, V.; Forrer, D.; Guadagnini, A.; Badocco, D.; Pastore, P.; Casarin, M.; Selloni, A.; Coral, D.; Ceolin, M.; Fernández van Raap, M. B. et al. 4D multimodal nanomedicines made of nonequilibrium Au–Fe alloy nanoparticles. ACS Nano 2020, 14, 12840–12853.
Favez, D.; Wagnière, J. D.; Rappaz, M. Au–Fe alloy solidification and solid-state transformations. Acta Mater. 2010, 58, 1016–1025.
Zhuravlev, I. A.; Barabash, S. V.; An, J. M.; Belashchenko, K. D. Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys. Phys. Rev. B 2017, 96, 134109.
Alexander, D. T. L.; Forrer, D.; Rossi, E.; Lidorikis, E.; Agnoli, S.; Bernasconi, G. D.; Butet, J.; Martin, O. J. F.; Amendola, V. Electronic structure-dependent surface plasmon resonance in single Au–Fe nanoalloys. Nano Lett. 2019, 19, 5754–5761.
Naitabdi, A.; Roldan Cuenya, B. Formation, thermal stability, and surface composition of size-selected AuFe nanoparticles. Appl. Phys. Lett. 2007, 91, 113110.
Liu, H. L.; Wu, J. H.; Min, J. H.; Kim, Y. K. Synthesis of monosized magnetic-optical AuFe alloy nanoparticles. J. Appl. Phys. 2008, 103, 07D529.
Velasco, V.; Pohl, D.; Surrey, A.; Bonatto-Minella, A.; Hernando, A.; Crespo, P.; Rellinghaus, B. On the stability of AuFe alloy nanoparticles. Nanotechnology 2014, 25, 215703.
Pannu, C.; Bala, M.; Singh, U. B.; Srivastava, S. K.; Kabiraj, D.; Avasthi, D. K. Phase decomposition of AuFe alloy nanoparticles embedded in silica matrix under swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2016, 379, 206–210.
Lasserus, M.; Knez, D.; Schnedlitz, M.; Hauser, A. W.; Hofer, F.; Ernst, W. E. On the passivation of iron particles at the nanoscale. Nanoscale Adv. 2019, 1, 2276–2283.
Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.
Wang, Z. Y.; Li, Z. Y.; Sun, Z. L.; Wang, S. R.; Ali, Z.; Zhu, S. H.; Liu, S.; Ren, Q. S.; Sheng, F. G.; Wang, B. D. et al. Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer. Sci. Adv. 2020, 6, eabc8733.
Tymoczko, A.; Kamp, M.; Prymak, O.; Rehbock, C.; Jakobi, J.; Schürmann, U.; Kienle, L.; Barcikowski, S. How the crystal structure and phase segregation of Au–Fe alloy nanoparticles are ruled by the molar fraction and size. Nanoscale 2018, 10, 16434–16437.
Langlois, C.; Benzo, P.; Arenal, R.; Benoit, M.; Nicolai, J.; Combe, N.; Ponchet, A.; Casanove, M. J. Fully crystalline faceted Fe–Au core–shell nanoparticles. Nano Lett. 2015, 15, 5075–5080.
Chung, R. J.; Shih, H. T. Preparation of multifunctional Fe@Au core-shell nanoparticles with surface grafting as a potential treatment for magnetic hyperthermia. Materials 2014, 7, 653–661.
Amram, D.; Rabkin, E. Core(Fe)–Shell(Au) nanoparticles obtained from thin Fe/Au bilayers employing surface segregation. ACS Nano 2014, 8, 10687–10693.
Zhang, J.; Post, M.; Veres, T.; Jakubek, Z. J.; Guan, J. W.; Wang, D. S.; Normandin, F.; Deslandes, Y.; Simard, B. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J. Phys. Chem. B 2006, 110, 7122–7128.
Kharisov, B. I.; Dias, H. V. R.; Kharissova, O. V.; Vázquez, A.; Peña, Y.; Gómez, I. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: Recent trends. RSC Adv. 2014, 4, 45354–45381.
Srinoi, P.; Chen, Y. T.; Vittur, V.; Marquez, M. D.; Lee, T. R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 2018, 8, 1106.
Zhang, D. S.; Gökce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103.
Amendola, V.; Scaramuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghigna, P. et al. Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res. 2015, 8, 4007–4023.
Shih, C. Y.; Streubel, R.; Heberle, J.; Letzel, A.; Shugaev, M. V.; Wu, C. P.; Schmidt, M.; Gökce, B.; Barcikowski, S.; Zhigilei, L. V. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution. Nanoscale 2018, 10, 6900–6910.
Tymoczko, A.; Kamp, M.; Rehbock, C.; Kienle, L.; Cattaruzza, E.; Barcikowski, S.; Amendola, V. One-step synthesis of Fe–Au core– shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horiz. 2019, 4, 1326–1332.
Wagener, P.; Jakobi, J.; Rehbock, C.; Chakravadhanula, V. S. K.; Thede, C.; Wiedwald, U.; Bartsch, M.; Kienle, L.; Barcikowski, S. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci. Rep. 2016, 6, 23352.
Kamp, M.; Tymoczko, A.; Schürmann, U.; Jakobi, J.; Rehbock, C.; Rätzke, K.; Barcikowski, S.; Kienle, L. Temperature-dependent ultrastructure transformation of Au–Fe nanoparticles investigated by in situ scanning transmission electron microscopy. Cryst. Growth Des. 2018, 18, 5434–5440.
Esparza, R.; Santoveña, A.; Ruíz-Baltazar, A.; Angeles-Pascual, A.; Bahena, D.; Maya-Cornejo, J.; Ledesma-García, J.; Pérez, R. Study of PtPd bimetallic nanoparticles for fuel cell applications. Mater. Res. 2017, 20, 1193–1200.
Kim, S. M.; Mun, J. H.; Lee, S. W.; An, H.; Kim, H. Y.; Kim, S. O.; Park, J. Y. Compositional effect of two-dimensional monodisperse AuPd bimetallic nanoparticle arrays fabricated by block copolymer nanopatterning on catalytic activity of CO oxidation. Chem. Commun. 2018, 54, 13734–13737.
Jinnouchi, R.; Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 2017, 8, 4279–4283.
Yang, C. P.; Ko, B. H.; Hwang, S.; Liu, Z. Y.; Yao, Y. G.; Luc, W.; Cui, M. J.; Malkani, A. S.; Li, T. Y.; Wang, X. Z. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 2020, 6, eaaz6844.
Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen 1918, 2, 96–100.
Stokes, A. R.; Wilson, A. J. C. The diffraction of X rays by distorted crystal aggregates-I. Proc. Phys. Soc. 1944, 56, 174–181.
Dinnebier, R. E.; Billinge, S. J. L. Powder Diffraction: Theory and Practice; Royal Society of Chemistry: Cambridge, 2008.
Williamson, G. K.; Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31.
Koch, C.; Hansen, A. L.; Dankwort, T.; Schienke, G.; Paulsen, M.; Meyer, D.; Wimmer, M.; Wuttig, M.; Kienle, L.; Bensch, W. Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials. Rsc Adv. 2017, 7, 17164–17172.
Hansen, A. L.; Dankwort, T.; Winkler, M.; Ditto, J.; Johnson, D. C.; Koenig, J. D.; Bartholomé, K.; Kienle, L.; Bensch, W. Synthesis and thermal instability of high-quality Bi2Te3/Sb2Te3 superlattice thin film thermoelectrics. Chem. Mater. 2014, 26, 6518–6522.
Vieweg, B. F.; Butz, B.; Peukert, W.; Klupp Taylor, R. N.; Spiecker, E. TEM preparation method for site- and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry. Ultramicroscopy 2012, 113, 165–170.
Lim, J.; Kim, S. H.; Aymerich Armengol, R.; Kasian, O.; Choi, P. P.; Stephenson, L. T.; Gault, B.; Scheu, C. Atomic-scale mapping of impurities in partially reduced hollow TiO2 nanowires. Angew. Chem., Int. Ed. 2020, 59, 5651–5655.
Thompson, K.; Lawrence, D.; Larson, D. J.; Olson, J. D.; Kelly, T. F.; Gorman, B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 2007, 107, 131–139.
Calvo, F.; Combe, N.; Morillo, J.; Benoit, M. Modeling iron–gold nanoparticles using a dedicated semi-empirical potential: Application to the stability of core–shell structures. J. Phys. Chem. C 2017, 121, 4680–4691.
Chamati, H.; Papanicolaou, N. I. Second-moment interatomic potential for gold and its application to molecular-dynamics simulations. J. Phys. Condens. Matter 2004, 16, 8399–8407.
Mendelev, M. I.; Han, S.; Srolovitz, D. J.; Ackland, G. J.; Sun, D. Y.; Asta, M. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 2003, 83, 3977–3994.
Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 1983, 28, 784–805.
Kamp, M.; Tymoczko, A.; Popescu, R.; Schürmann, U.; Nadarajah, R.; Gökce, B.; Rehbock, C.; Gerthsen, D.; Barcikowski, S.; Kienle, L. Composition and structure of magnetic high-temperature-phase, stable Fe–Au core–shell nanoparticles with zero-valent bcc Fe core. Nanoscale Adv. 2020, 2, 3912–3920.
Piatek, A., 2020. Laser generated magneto-plasmonic Fe-Au Nanoparticles: Formation, Real Structure and Properties. Ph. D. Dissertation, University of Duisburg-Essen 2020.
Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982.
Monshi, A.; Foroughi, M. R.; Monshi, M. R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160.
Miranda, M. A. R.; Sasaki, J. M. The limit of application of the Scherrer equation. Acta Cryst. 2018, A74, 54–65.
Helmlinger, J.; Prymak, O.; Loza, K.; Gocyla, M.; Heggen, M.; Epple, M. On the crystallography of silver nanoparticles with different shapes. Cryst. Growth Des. 2016, 16, 3677–3687.
Prymak, O.; Grasmik, V.; Loza, K.; Heggen, M.; Epple, M. Temperature-induced stress relaxation in alloyed silver–gold nanoparticles (7–8 nm) by in situ X-ray powder diffraction. Cryst. Growth Des. 2020, 20, 107–115.
Barthes, M. G.; Rhead, G. E. Substrate and instrumental effects in quantitative Auger electron spectroscopy: The system lead on gold. J. Phys. D Appl. Phys. 1980, 13, 747–757.
Robbins, M.; White, J. G. Magnetic properties of epsilon-iron nitride. J. Phys. Chem. Solids 1964, 25, 717–720.
Askill, J. Correlation of self diffusion data in metals as a function of thermal expansion coefficient. Phys. Status Solidi B 1965, 11, K49–K50.
Graham, D.; Tomlin, D. H. Self-diffusion in iron. Philos. Mag. 1963, 8, 1581–1585.
Okkerse, B. Self-diffusion of gold. Phys. Rev. 1956, 103, 1246– 1249.
Moisala, A.; Nasibulin, A. G.; Kauppinen, E. I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys. Condens. Matter 2003, 15, S3011– S3035.
Guisbiers, G.; Abudukelimu, G. Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J. Nanopart. Res. 2013, 15, 1431.
Okamoto, H.; Massalski, T. B.; Swartzendruber, L. J.; Beck, P. A. The Au−Fe (Gold-Iron) system. Bull. Alloy Phase Diagr. 1984, 5, 592–601.
Shih, C. Y.; Shugaev, M. V.; Wu, C. P.; Zhigilei, L. V. The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: Insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 2020, 22, 7077–7099.
Kumar, S. Structural evolution of iron–copper (Fe–Cu) bimetallic janus nanoparticles during solidification: An atomistic investigation. J. Phys. Chem. C 2020, 124, 1053–1063.
Schnedlitz, M.; Knez, D.; Lasserus, M.; Hofer, F.; Fernández-Perea, R.; Hauser, A. W.; Pilar de Lara-Castells, M.; Ernst, W. E. Thermally induced diffusion and restructuring of iron triade (Fe, Co, Ni) nanoparticles passivated by several layers of gold. J. Phys. Chem. C 2020, 124, 16680–16688.
Duhl, D.; Hirano, K. I.; Cohen, M. Diffusion of iron, cobalt and nickel in gold. Acta Metall. 1963, 11, 1–6.
Borg, R. J.; Lai, D. Y. F. The diffusion of gold, nickel, and cobalt in alpha iron: A study of the effect of ferromagnetism upon diffusion. Acta Metall. 1963, 11, 861–866.
Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695, 211–220.
Aba-Perea, P. E.; Withers, P. J.; Pirling, T.; Paradowska, A.; Ma, D.; Preuss, M. In situ study of the stress relaxation during aging of nickel-base superalloy forgings. Metall. Mater. Trans. A 2019, 50, 3555–3565.
Prymak, O.; Jakobi, J.; Rehbock, C.; Epple, M.; Barcikowski, S. Crystallographic characterization of laser-generated, polymer-stabilized 4 nm silver-gold alloyed nanoparticles. Mater. Chem. Phys. 2018, 207, 442–450.
Weinberger, C. R.; Boyce, B. L.; Battaile, C. C. Slip planes in bcc transition metals. Int. Mater. Rev. 2013, 58, 296–314.
Soboyejo, W. O. Mechanical Properties of Engineered Materials. CRC Press: New York, 2002.
Wang, Y. C.; Slater, T. J. A.; Leteba, G. M.; Roseman, A. M.; Race, C. P.; Young, N. P.; Kirkland, A. I.; Lang, C. I.; Haigh, S. J. Imaging three-dimensional elemental inhomogeneity in Pt–Ni nanoparticles using spectroscopic single particle reconstruction. Nano Lett. 2019, 19, 732–738.
Kim, S. H.; Jang, K.; Kang, P. W.; Ahn, J. P.; Seol, J. B.; Kwak, C. M.; Hatzoglou, C.; Vurpillot, F.; Choi, P. P. Characterization of Pd and Pd@Au core-shell nanoparticles using atom probe tomography and field evaporation simulation. J. Alloys Compd. 2020, 831, 154721.
Doye, J. P. K.; Wales, D. J.; Berry, R. S. The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 1995, 103, 4234–4249.
Cheng, D. J.; Wang, W. C.; Huang, S. P. The onion-ring structure for Pd−Pt bimetallic clusters. J. Phys. Chem. B 2006, 110, 16193–16196.
Baletto, F.; Mottet, C.; Ferrando, R. Growth simulations of silver shells on copper and palladium nanoclusters. Phys. Rev. B 2002, 66, 155420.
Liao, T. W.; Yadav, A.; Hu, K. J.; van der Tol, J.; Cosentino, S.; D'Acapito, F.; Palmer, R. E.; Lenardi, C.; Ferrando, R.; Grandjean, D. et al. Unravelling the nucleation mechanism of bimetallic nanoparticles with composition-tunable core–shell arrangement. Nanoscale 2018, 10, 6684–6694.
Liao, T. W.; Yadav, A.; Ferrari, P.; Niu, Y. B.; Wei, X. K.; Vernieres, J.; Hu, K. J.; Heggen, M.; Dunin-Borkowski, R. E.; Palmer, R. E. Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts. Chem. Mater. 2019, 31, 10040–10048.
Krishnan, G.; Verheijen, M. A.; ten Brink, G. H.; Palasantzas, G.; Kooi, B. J. Tuning structural motifs and alloying of bulk immiscible Mo–Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale 2013, 5, 5375–5383.
971
Views
18
Downloads
18
Crossref
18
Web of Science
18
Scopus
0
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.