Journal Home > Volume 14 , Issue 9

Confronted by the inherent physical limitations in scaling down Si technology, transition metal dichalcogenides (TMDCs) as alternatives are being tremendously researched and paid attention to. However, mature counter doping technology for TMDCs is still elusive, and thus, a controllable and reversible charge enhancer is adopted for acceptor (or donor)-like doping via octadecyltrichlorosilane (ODTS) (or poly-L-lysine (PLL)) treatment. Furthermore, multiple counter doping for TMDC field-effect transistors (FETs), combined with a threshold voltage (Vth) freezing scheme, renders the Vth modulation controllable, with negligible degradation and decent sustainability of FETs even after each treatment of a representative charge enhancer. In parallel, the counter doping mechanism is systematically investigated via photoluminescence spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy (AFM), surface energy characterization, and measurement of optoelectronic properties under illumination with light of various wavelengths. More impressively, complementary inverters, composed of type-converted molybdenum ditelluride (MoTe2) FETs and hetero-TMDC FETs in enhancement mode, are demonstrated via respective ODTS/PLL treatments. Herein, driving backplane application for micro-light-emitting diode (µ-LED) displays and physical validation of a corresponding counter doping scheme even for flexible polyethylene terephthalate (PET) substrates could be leveraged to relieve daunting challenges in the application of nanoscale Si-based three-dimensional (3D) stacked systems, with potential adoption of ultralow power and monolithic optical interconnection technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers

Show Author's information Seung Gi SeoJinheon JeongSeung Yeob KimAjit KumarSung Hun Jin( )
Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon 22012, Republic of Korea

Abstract

Confronted by the inherent physical limitations in scaling down Si technology, transition metal dichalcogenides (TMDCs) as alternatives are being tremendously researched and paid attention to. However, mature counter doping technology for TMDCs is still elusive, and thus, a controllable and reversible charge enhancer is adopted for acceptor (or donor)-like doping via octadecyltrichlorosilane (ODTS) (or poly-L-lysine (PLL)) treatment. Furthermore, multiple counter doping for TMDC field-effect transistors (FETs), combined with a threshold voltage (Vth) freezing scheme, renders the Vth modulation controllable, with negligible degradation and decent sustainability of FETs even after each treatment of a representative charge enhancer. In parallel, the counter doping mechanism is systematically investigated via photoluminescence spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy (AFM), surface energy characterization, and measurement of optoelectronic properties under illumination with light of various wavelengths. More impressively, complementary inverters, composed of type-converted molybdenum ditelluride (MoTe2) FETs and hetero-TMDC FETs in enhancement mode, are demonstrated via respective ODTS/PLL treatments. Herein, driving backplane application for micro-light-emitting diode (µ-LED) displays and physical validation of a corresponding counter doping scheme even for flexible polyethylene terephthalate (PET) substrates could be leveraged to relieve daunting challenges in the application of nanoscale Si-based three-dimensional (3D) stacked systems, with potential adoption of ultralow power and monolithic optical interconnection technology.

Keywords: field-effect transistors, transition metal dichalcogenides (TMDCs), counter doping, charge enhancer, micro-light-emitting diode (μ-LED)

References(53)

[1]
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
[2]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[3]
Venkata Subbaiah, Y. P.; Saji, K. J.; Tiwari, A. Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater. 2016, 26, 2046-2069.
[4]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[5]
Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516-4522.
[6]
Pherson, M. R. M. The adjustment of mos transistor threshold voltage by ion implantation. Appl. Phys. Lett. 1971, 18, 502-504.
[7]
Park, Y. J.; Katiyar, A. K.; Hoang, A. T.; Ahn, J. H. Controllable p- and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.
[8]
Cho, Y.; Park, J. H.; Kim, M.; Jeong, Y.; Yu, S.; Lim, J. Y.; Yi, Y.; Im, S. Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett. 2019, 19, 2456-2463.
[9]
Roh, J.; Ryu, J. H.; Baek, G. W.; Jung, H.; Seo, S. G.; An, K.; Jeong, B. G.; Lee, D. C.; Hong, B. H.; Bae, W. K. et al. Threshold voltage control of multilayered MoS2 field-effect transistors via octadecyltrichlorosilane and their applications to active matrixed quantum dot displays driven by enhancement-mode logic Gates. Small 2019, 15, 1803852.
[10]
Park, J.; Kang, D. H.; Kim, J. K.; Park, J. H.; Yu, H. Y. Efficient threshold voltage adjustment technique by dielectric capping effect on MoS2 field-effect transistor. IEEE Electron Device Lett. 2017, 38, 1172-1175.
[11]
Li, X. K.; Sun, R. X.; Guo, H. W.; Su, B. W.; Li, D. K.; Yan, X. Q.; Liu, Z. B.; Tian, J. G. Controllable doping of transition-metal dichalcogenides by organic solvents. Adv. Electron. Mater. 2020, 6, 1901230.
[12]
Kawanago, T.; Oda, S. Control of threshold voltage by gate metal electrode in molybdenum disulfide field-effect transistors. Appl. Phys. Lett. 2017, 110, 133507.
[13]
Jiang, J.; Dhar, S. Tuning the threshold voltage from depletion to enhancement mode in a multilayer MoS2 transistor via oxygen adsorption and desorption. Phys. Chem. Chem. Phys. 2016, 18, 685-689.
[14]
Leong, W. S.; Li, Y. D.; Luo, X.; Nai, C. T.; Quek, S. Y.; Thong, J. T. L. Tuning the threshold voltage of MoS2 field-effect transistors via surface treatment. Nanoscale 2015, 7, 10823-10831.
[15]
Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976-5983.
[16]
Najmaei, S.; Zou, X. L.; Er, D. Q.; Li, J. W.; Jin, Z. H.; Gao, W. L.; Zhang, Q.; Park, S.; Ge, L. H.; Lei, S. D. et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 2014, 14, 1354-1361.
[17]
Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795-7804.
[18]
Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics 2017, 4, 1822-1830.
[19]
Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[20]
Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099-1107.
[21]
Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.
[22]
Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030-12033.
[23]
Basu, A. K.; Sah, A. N.; Pradhan, A.; Bhattacharya, S. Poly-L-lysine functionalised MWCNT-rGO nanosheets based 3D hybrid structure for femtomolar level cholesterol detection using cantilever based sensing platform. Sci. Rep. 2019, 9, 3686.
[24]
Zhang, Y. J.; Li, J.; Shen, Y. F.; Wang, M. J.; Li, J. H. Poly-L-lysine functionalization of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 15343-15346.
[25]
Mei, J. C.; Li, Y. T.; Zhang, H.; Xiao, M. M.; Ning, Y.; Zhang, Z. Y.; Zhang, G. J. Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. Biosens. Bioelectron. 2018, 110, 71-77.
[26]
Meroni, D.; Lo Presti, L.; Di Liberto, G.; Ceotto, M.; Acres, R. G.; Prince, K. C.; Bellani, R.; Soliveri, G.; Ardizzone, S. A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: An experimental and theoretical study. J. Phys. Chem. C 2017, 121, 430-440.
[27]
Wang, Y. K.; Krasnopeeva, E.; Lin, S. Y.; Bai, F.; Pilizota, T.; Lo, C. J. Comparison of Escherichia coli surface attachment methods for single-cell microscopy. Sci. Rep. 2019, 9, 19418.
[28]
Louise Meyer, R.; Zhou, X. F.; Tang, L.; Arpanaei, A.; Kingshott, P.; Besenbacher, F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 2010, 110, 1349-1357.
[29]
Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 2013, 7, 7751-7758.
[30]
Seo, S. G.; Jeong, J.; Jin, S. H. Influence of air atmosphere on electrical characteristics of p-type MoTe2 FETs under DC and pulsed mode operation. Microelectron. Reliab. 2020, 111, 113680.
[31]
Roh, J.; Cho, I. T.; Shin, H.; Woo Baek, G.; Hee Hong, B.; Lee, J. H.; Hun Jin, S.; Lee, C. Fluorinated CYTOP passivation effects on the electrical reliability of multilayer MoS2 field-effect transistors. Nanotechnology 2015, 26, 455201.
[32]
Seo, S. G.; Hong, J. H.; Ryu, J. H.; Jin, S. H. Low-frequency noise characteristics in multilayer MoTe2 FETs with hydrophobic amorphous fluoropolymers. IEEE Electron Device Lett. 2019, 40, 251-254.
[33]
Seo, S. G.; Joeng, J.; Kim, K.; Kim, K.; Jin, S. H. Bias stress instability in multilayered MoS2 field-effect transistors under pulse-mode operation. IEEE Trans. Electron Devices 2020, 67, 1864-1872.
[34]
Jeon, P. J.; Min, S. W.; Kim, J. S.; Raza, S. R. A.; Choi, K.; Lee, H. S.; Lee, Y. T.; Hwang, D. K.; Choi, H. J.; Im, S. Enhanced device performances of WSe2-MoS2 van der Waals junction p-n diode by fluoropolymer encapsulation. J. Mater. Chem. C 2015, 3, 2751-2758.
[35]
Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175-1181.
[36]
Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323-5329.
[37]
Cho, K.; Min, M.; Kim, T. Y.; Jeong, H.; Pak, J.; Kim, J. K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W. K. et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano 2015, 9, 8044-8053.
[38]
Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.
[39]
Iqbal, M. W.; Amin, A.; Kamran, M. A.; Ateeq, H.; Elahi, E.; Hussain, G.; Azam, S.; Aftab, S.; Alharbi, T.; Majid, A. Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping. Superlattices Microstruct. 2019, 135, 106247.
[40]
Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.
[41]
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[42]
Lee, B.; Chen, Y.; Duerr, F.; Mastrogiovanni, D.; Garfunkel, E.; Andrei, E. Y.; Podzorov, V. Modification of electronic properties of graphene with self-assembled monolayers. Nano Lett. 2010, 10, 2427-2432.
[43]
Nalwa, H. S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529-30602
[44]
Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[45]
Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263-3269.
[46]
Ji, H.; Lee, G.; Joo, M. K.; Yun, Y.; Yi, H.; Park, J. H.; Suh, D.; Lim, S. C. Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering. Appl. Phys. Lett. 2017, 110, 183501.
[47]
Jin, S. H.; Park, M. S.; Shur, M. S. Photosensitive inverter and ring oscillator with pseudodepletion mode load for LCD applications. IEEE Electron Device Lett. 2009, 30, 943-945.
[48]
Ryu, J. H.; Baek, G. W.; Yu, S. J.; Seo, S. G.; Jin, S. H. Photosensitive full-swing multi-layer MoS2 inverters with light shielding layers. IEEE Electron Device Lett. 2017, 38, 67-70.
[49]
Seo, S. G.; Han, S. W.; Cha, H. Y.; Yang, S.; Jin, S. H. Light-shield layers free photosensitive inverters comprising GaN-drivers and multi-layered MoS2-loads. IEEE Electron Device Lett. 2019, 40, 107-110.
[50]
Seo, S. G.; Jin, S. H. Photosensitive complementary inverters based on n-channel MoS2 and p-channel MoTe2 transistors for light-to-frequency conversion circuits. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900317.
[51]
Hsieh, H. H.; Tsai, T. T.; Chang, C. Y.; Wang, H. H.; Huang, J. Y.; Hsu, S. F.; Wu, Y. C.; Tsai, T. C.; Chuang, C. S.; Chang, L. H. et al. 11.2: A 2.4in. AMOLED with IGZO TFTs and inverted OLED devices. SID Symp. Dig. Tech. Pap. 2010, 41, 140-143.
[52]
Hosono, H.; Kim, J.; Toda, Y.; Kamiya, T.; Watanabe, S. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs. Proc. Natl. Acad. Sci. USA 2017, 114, 233-238.
[53]
Gindl, M.; Sinn, G.; Gindl, W.; Reiterer, A.; Tschegg, S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf. A Physicochem. Eng. Asp. 2001, 181, 279-287.
File
12274_2021_3523_MOESM1_ESM.pdf (6.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 January 2021
Revised: 13 April 2021
Accepted: 15 April 2021
Published: 20 May 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1A6A1A03041954) and partly supported by (i) the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2019R1F1A1062767) and by (ii) the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. NRF-2021R1A2C1012593).

Return