Journal Home > Volume 15 , Issue 1

The wettability of catalyst plays an important role in regulating catalytic performance in heterogenous catalysis because the microenvironment around the catalytic sites directly determines the mass transfer process of reactants. Inspired by gas trapped on the surface of subaquatic spiders, amphiphilic micro-organohydrogels with tunable surface wettabilities were developed by anchoring various alkane chains onto a poly(2-(dimethylamino)ethyl methacrylate) (p(DMAEMA)) hydrophilic microgel network. Palladium nanoparticles (Pd NPs) were encapsulated in amphiphilic microgels (amphiphilic Pd@M) to catalyze hydrogenation reaction, achieving higher activities than pristine monohydrophilic Pd@M composite. The underwater oleophilicity and aerophilicity of Pd@M composites were quantified by oil/gas adhesion measurements and computational simulations. The higher amphiphilic catalytic activities are attributed to the formation of a gas–oil–solid reaction interface on the catalyst surfaces, allowing rapid transport of H2 and organic substrates through water to the Pd catalytic sites. Additionally, amphiphilic Pd@M composites also exhibit more superior catalytic performance in multi-substrates reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas–liquid–solid triphasic catalytic performance

Show Author's information Minghui Zhang1Tianyi Zhao1( )Cunming Yu1Qian Liu1Guangyan Wang1Hui Yang2Ming Yang2Lei Jiang1Mingjie Liu1( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University Beijing 100191 China
CAS Key Lab of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

The wettability of catalyst plays an important role in regulating catalytic performance in heterogenous catalysis because the microenvironment around the catalytic sites directly determines the mass transfer process of reactants. Inspired by gas trapped on the surface of subaquatic spiders, amphiphilic micro-organohydrogels with tunable surface wettabilities were developed by anchoring various alkane chains onto a poly(2-(dimethylamino)ethyl methacrylate) (p(DMAEMA)) hydrophilic microgel network. Palladium nanoparticles (Pd NPs) were encapsulated in amphiphilic microgels (amphiphilic Pd@M) to catalyze hydrogenation reaction, achieving higher activities than pristine monohydrophilic Pd@M composite. The underwater oleophilicity and aerophilicity of Pd@M composites were quantified by oil/gas adhesion measurements and computational simulations. The higher amphiphilic catalytic activities are attributed to the formation of a gas–oil–solid reaction interface on the catalyst surfaces, allowing rapid transport of H2 and organic substrates through water to the Pd catalytic sites. Additionally, amphiphilic Pd@M composites also exhibit more superior catalytic performance in multi-substrates reaction.

Keywords: heterogeneous catalysis, tunable surface wettability, bioinspired materials, gel, amphiphilic microgel, three-phase catalysis

References(42)

1

Savage, N. Synthetic coatings: Super surfaces. Nature 2015, 519, S7.

2

Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285.

3

Xu, T. L.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Bioinspired super­wettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165.

4

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

5

Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

6

Leung, J. J.; Vigil, J. A.; Warnan, J.; Moore, E. E.; Reisner, E. Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem. , Int. Ed. 2019, 58, 7697–7701.

7

Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Polydime­thylsiloxane Coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew. Chem. , Int. Ed. 2016, 55, 7379–7383.

8

Sheng, X.; Liu, Z.; Zeng, R. S.; Chen, L. P.; Feng, X. J.; Jiang, L. Enhanced photocatalytic reaction at air–liquid–solid joint interfaces. J. Am. Chem. Soc. 2017, 139, 12402–12405.

9

Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem. , Int. Ed. 2020, 59, 3650– 3657.

10

Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L. Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem. , Int. Ed. 2019, 58, 14549–14555.

11

Thiot, C.; Schmutz, M.; Wagner, A.; Mioskowski, C. Polyionic gels: Efficient heterogeneous media for metal scavenging and catalysis. Angew. Chem. , Int. Ed. 2006, 45, 2868–2871.

12

Ferguson, C. T. J.; Huber, N.; Landfester, K.; Zhang, K. A. I. Dual-responsive photocatalytic polymer nanogels. Angew. Chem. , Int. Ed. 2019, 58, 10567–10571.

13

Li, F. Y.; Wang, C. Y.; Guo, W. W. Multifunctional poly-N-isopropy­lacrylamide/DNAzyme microgels as highly efficient and recyclable catalysts for biosensing. Adv. Funct. Mater. 2018, 28, 1705876.

14

Fang, W. W.; Zhang, Y.; Wu, J. J.; Liu, C.; Zhu, H. B.; Tu, T. Recent advances in supramolecular gels and catalysis. Chem. –Asian J. 2018, 13, 712–729.

15

Malviya, N.; Sonkar, C.; Kundu, B. K.; Mukhopadhyay, S. Discotic organic gelators in ion sensing, metallogel formation, and bioinspired catalysis. Langmuir 2018, 34, 11575–11585.

16

Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.

17

Sano, K.; Ishida, Y.; Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem. , Int. Ed. 2018, 57, 2532–2543.

18

Jung, J. H.; Lee, J. H.; Silverman, J. R.; John, G. Coordination polymer gels with important environmental and biological applications. Chem. Soc. Rev. 2013, 42, 924–936.

19

Kuksenok, O.; Dayal, P.; Bhattacharya, A.; Yashin, V. V.; Deb, D.; Chen, I. C.; Van Vliet, K. J.; Balazs, A. C. Chemo-responsive, self- oscillating gels that undergo biomimetic communication. Chem. Soc. Rev. 2013, 42, 7257–7277.

20

Gu, Y. W.; Zhao, J. L.; Johnson, J. A. Polymer networks: From plastics and gels to porous frameworks. Angew. Chem. , Int. Ed. 2020, 59, 5022–5049.

21

Mateen, M.; Shah, K.; Chen, Z.; Chen, C.; Li, Y. D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Res. 2019, 12, 1631–1634.

22

He, T. W.; Zhang, C. M.; Zhang, L.; Du, A. J. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydro­genation of nitrobenzene into aniline. Nano Res. 2019, 12, 1817–1823.

23

Guo, L.; Mao, J. J.; Guo, S. X.; Zhang, Q.; Cai S. F.; He W. PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Res. 2019, 12, 1659–1662.

24

Hawkins, K.; Patterson, A. K.; Clarke, P. A.; Smith, D. K. Catalytic gels for a prebiotically relevant asymmetric aldol reaction in water: From organocatalyst design to hydrogel discovery and back again. J. Am. Chem. Soc. 2020, 142, 4379–4389.

25

Bernini, R.; Cacchi, S.; Fabrizi, G.; Niembro, S.; Prastaro, A.; Shafir, A.; Vallribera, A. Perfluoro-tagged gold nanoparticles immobilized on fluorous silica gel: A reusable catalyst for the benign oxidation and oxidative esterification of alcohols. ChemSusChem 2009, 2, 1036–1040.

26

Hua, H.; Zeng, J. C.; Wang, G. R.; Zhang, J.; Zhou, J. Z.; Pan, Y.; Liu, Q.; Xu, Y. F.; Qian, G. R.; Xu, Z. P. Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low- temperature selective catalytic reduction of NO. J. Hazard. Mater. 2020, 381, 120935.

27

Slavik, P.; Smith, D. K. Hybrid hydrogels loaded with palladium nanoparticles–Catalysts for environmentally-friendly Sonogashira and Heck cross-coupling reactions. Tetrahedron 2020, 76, 131344.

28

Zhao, Y. L.; Kang, S. C.; Qin, L.; Wang, W.; Zhang, T. T.; Song, S. X.; Komarneni, S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322.

29

Shim, Y.; Young, R. M.; Douvalis, A. P.; Dyar, S. M.; Yuhas, B. D.; Bakas, T.; Wasielewski, M. R.; Kanatzidis, M. G. Enhanced photo­chemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers. J. Am. Chem. Soc. 2014, 136, 13371–13380.

30

Weingarten, A. S.; Kazantsev, R. V.; Palmer, L. C.; Fairfield, D. J.; Koltonow, A. R.; Stupp, S. I. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 2015, 137, 15241–15246.

31

Iuster, N.; Tairy, O.; Driver, M. J.; Armes, S. P. Klein J. Cross- linking highly lubricious phosphocholinated polymer brushes: Effect on surface interactions and frictional behavior. Macromolecules 2017, 50, 7361–7371.

32

Yao, X.; Chen, L.; Ju, J.; Li, C. H.; Tian, Y.; Jiang, L.; Liu M. J. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv. Mater. 2016, 28, 7383–7389.

33

Georgieva, D.; Schmitt, V.; Leal-Calderon, F.; Langevin, D. On the possible role of surface elasticity in emulsion stability. Langmuir 2009, 25, 5565–5573.

34

Blundell, R. K.; Licence, P. Tuning cation–anion interactions in ionic liquids by changing the conformational flexibility of the cation. Chem. Commun. 2014, 50, 12080–12083.

35

Mathew, R. T.; Cooney, R. P.; Malmstrom, J.; Doyle, C. S. Atomic force microscopy and angular-dependent X-ray photoelectron spectroscopy studies of anchored quaternary ammonium salt biocides on quartz surfaces. Langmuir 2018, 34, 4750–4761.

36

Ikegami, S.; Hamamoto, H. Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem. Rev. 2009, 109, 583–593.

37

Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.

38

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

39

Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257.

40

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 1973, 28, 213–222.

41

Yu, C. M.; Cao, M. Y.; Dong, Z. C.; Wang, J. M.; Li, K.; Jiang, L. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones. Adv. Funct. Mater. 2016, 26, 3236–3243.

42

Yu, C. M.; Zhang, P. P.; Wang, J. M.; Jiang, L. Superwettability of gas bubbles and its application: From bioinspiration to advanced materials. Adv. Mater. 2017, 29, 1703053.

File
12274_2021_3520_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2021
Revised: 12 April 2021
Accepted: 13 April 2021
Published: 22 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the National Natural Science Funds for Distinguished Young Scholar (No. 21725401), the National Key Technologies R & D Program of China (No. 2017YFA0207800), the China Scholarship Council (CSC, No. 201606025097), the 111 project (No. B14009), the Chinese Postdoctoral Science Foundation (Nos. 2017M620012 and 2019M650434), and the Fundamental Research Funds for the Central Universities.

Return