Journal Home > Volume 15 , Issue 1

Facile synthesis of photocatalysts with highly dispersed metal centers is a high-priority target yet still a significant challenge. In this work, a series of Co-C3N4 photocatalysts with different Co contents atomically dispersed on g-C3N4 have been prepared via one-step thermal treatment of cobalt-based metal-organic frameworks (MOFs) and urea in the air. Thanks to the highly dispersed and rich exposed Co sites, as well as good charge separation efficiency and abundant mesopores, the optimal 25-Co-C3N4, in the absence of noble metal catalysts/sensitizers, exhibits excellent performance for photocatalytic CO2 reduction to CO under visible light irradiation, with a high CO evolution rate of 394.4 μmol·g–1·h–1, over 80 times higher than that of pure g-C3N4 (4.9 μmol·g–1·h–1). In addition, by this facile synthesis strategy, the atomically dispersed Fe and Mn anchoring on g-C3N4 (Fe-C3N4 and Mn-C3N4) have been also obtained, indicating the reliability and universality of this strategy in synthesizing photocatalysts with highly dispersed metal centers. This work paves a new way to develop cost-effective photocatalysts for photocatalytic CO2 reduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction

Show Author's information Yun-Nan Gong1,2,§Bi-Zhu Shao2,§Jian-Hua Mei2Wei Yang1Di-Chang Zhong1( )Tong-Bu Lu1
Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
Key Laboratory of Jiangxi University for Functional Material Chemistry College of Chemistry & Chemical Engineering Gannan Normal University Ganzhou 341000 China

§ Yun-Nan Gong and Bi-Zhu Shao contributed equally to this work.

Abstract

Facile synthesis of photocatalysts with highly dispersed metal centers is a high-priority target yet still a significant challenge. In this work, a series of Co-C3N4 photocatalysts with different Co contents atomically dispersed on g-C3N4 have been prepared via one-step thermal treatment of cobalt-based metal-organic frameworks (MOFs) and urea in the air. Thanks to the highly dispersed and rich exposed Co sites, as well as good charge separation efficiency and abundant mesopores, the optimal 25-Co-C3N4, in the absence of noble metal catalysts/sensitizers, exhibits excellent performance for photocatalytic CO2 reduction to CO under visible light irradiation, with a high CO evolution rate of 394.4 μmol·g–1·h–1, over 80 times higher than that of pure g-C3N4 (4.9 μmol·g–1·h–1). In addition, by this facile synthesis strategy, the atomically dispersed Fe and Mn anchoring on g-C3N4 (Fe-C3N4 and Mn-C3N4) have been also obtained, indicating the reliability and universality of this strategy in synthesizing photocatalysts with highly dispersed metal centers. This work paves a new way to develop cost-effective photocatalysts for photocatalytic CO2 reduction.

Keywords: metal-organic frameworks, g-C3N4, CO2 reduction, photocatalysts, highly dispersed metal

References(56)

1

Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products- closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048.

2

Dowell, N. M.; Fennell, P. S.; Shah, N.; Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Climate Change 2017, 7, 243–249.

3

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

4

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

5

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

6

Liu, D. C.; Zhong, D. C.; Lu, T. B. Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem 2020, 2, 100034.

7

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor- based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

8

Ren, X. H.; Philo, D.; Li, Y. X.; Shi, L.; Chang, K.; Ye, J. H. Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coord. Chem. Rev. 2020, 424, 213516.

9

Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem. , Int. Ed. 2019, 58, 12392–12397.

10

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

11

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

12

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation- induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, e1900546.

13

Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

14

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

15

Xia, T.; Long, R.; Gao, C.; Xiong, Y. J. Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction. Nanoscale 2019, 11, 11064–11070.

16

Tong, Y. C.; Chen, L.; Ning, S. B.; Tong, N.; Zhang, Z. Z.; Lin, H. X.; Li, F. Y.; Wang, X. X. Photocatalytic reduction of CO2 to CO over the Ti-highly dispersed HZSM-5 zeolite containing Fe. Appl. Catal. B: Environ. 2017, 203, 725–730.

17

Wang, Y.; Wang, S. B.; Lou, X. W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem. , Int. Ed. 2019, 58, 17236–17240.

18

Xiong, Z.; Xu, Z. W.; Li, Y. Z.; Dong, L. C.; Wang, J. Y.; Zhao, J. T.; Chen, X. X.; Zhao, Y. C.; Zhao, H. B.; Zhang, J. Y. Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water. Appl. Surf. Sci. 2020, 507, 145095.

19

Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

20

Luo, Y. H.; Dong, L. Z.; Liu, J.; Li S. L.; Lan, Y. Q. From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coord. Chem. Rev. 2019, 390, 86–126.

21

Si, Y. N.; He, X.; Jiang, J.; Duan, Z. M.; Wang, W. J.; Yuan, D. Q. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 2021, 14, 518–525.

22

Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

23

Zeng, L. Z.; Wang, Z. Y.; Wang, Y. K.; Wang, J.; Guo, Y.; Hu, H. H.; He, X. F.; Wang C.; Lin, W. B. Photoactivation of Cu centers in metal- organic frameworks for selective CO2 conversion to ethanol. J. Am. Chem. Soc. 2020, 142, 75–79.

24

Yan, P. Q.; Guo, W. H.; Liang, Z. B.; Meng, W.; Yin, Z.; Li, S. W.; Li, M. Z.; Zhang, M. T.; Yan, J.; Xiao, D. Q. et al. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Res. 2019, 12, 2341–2347.

25

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. , Int. Ed. 2016, 55, 10800–10805.

26

Li, X. M.; Wang, J. Y.; Xue, F. F.; Wu, Y. C.; Xu, H. L.; Yi, T.; Li, Q. W. An imine-linked metal-organic framework as a reactive oxygen species generator. Angew. Chem. , Int. Ed. 2021, 60, 2534–2540.

27

Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal–organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. , Int. Ed. 2020, 59, 15014–15020.

28

Zhang, M. D.; Dai, Q. B.; Zheng, H. E.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

29

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. , Int. Ed. 2020, 59, 2705–2709.

30

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143– 14149.

31

Ma, D. D.; Zhu, Q. L. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coord. Chem. Rev. 2020, 422, 213483.

32

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

33

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

34

Xiao, J. D.; Xie, Y. B.; Rabeah, J.; Brückner, A.; Cao, H. B. Visible- light photocatalytic ozonation using graphitic C3N4 catalysts: A hydroxyl radical manufacturer for wastewater treatment. Acc. Chem. Res. 2020, 53, 1024–1033.

35

Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. Y.; Yang, Y. K.; Lai, Y. K.; Lin, Z. Q. Environmental remediation: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1970110.

36

Ma, B.; Chen, G.; Fave, C.; Chen, L. J.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T. C.; Bonin J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188– 6195.

37

Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao H. J.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.

38

Zhang, J. H.; Yang, W.; Zhang, M.; Wang, H. J.; Si, R.; Zhong, D. C.; Lu, T. B. Metal-organic layers as a platform for developing single- atom catalysts for photochemical CO2 reduction. Nano Energy 2021, 80, 105542.

39

Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

40

Cheng, L.; Yin, H.; Cai, C.; Fan J. J.; Xiang, Q. J. Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: The role of edge confinement. Small 2020, 16, 2002411.

41

Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem. , Int. Ed. 2018, 57, 13570–13574.

42

Wang, J. C.; Yao, H. C.; Fan, Z. Y.; Zhang, L.; Wang, J. S.; Zang S. Q.; Li, Z. J. Indirect Z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 3765–3775.

43

Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang E. B.; Su, Z. M. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689–11695.

44

Shi, L.; Wang, T.; Zhang, H. B.; Chang K.; Ye, J. H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 2015, 25, 5360–5367.

45

Pan, Z. M.; Zhang, G. G.; Wang, X. C. Polymeric carbon nitride/ reduced graphene oxide/Fe2O3: All-solid-state Z-scheme system for photocatalytic overall water splitting. Angew. Chem. , Int. Ed. 2019, 58, 7102–7106.

46

Tahir, M.; Cao, C. B.; Butt, F. K.; Butt, S.; Idrees, F.; Ali, Z.; Aslam, I.; Tanveer, M.; Mahmood, A.; Mahmood, N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability. CrystEngComm 2014, 16, 1825–1830.

47

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photo­catalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

48

Lu, W. G.; Gu, J. Z.; Jiang, L.; Tan M. Y.; Lu, T. B. Achiral and chiral coordination polymers containing helical chains: The chirality transfer between helical chains. Cryst. Growth Des. 2008, 8, 192–199.

49

Ji, P. F.; Song, Y.; Drake, T.; Veroneau, S. S.; Lin, Z. K.; Pan, X. D.; Lin, W. B. Titanium(Ⅲ)-oxo clusters in a metal-organic framework support single-site Co(II)-hydride catalysts for arene hydrogenation. J. Am. Chem. Soc. 2018, 140, 433–440.

50

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

51

Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. , Int. Ed. 2019, 58, 9491–9495.

52

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

53

Wang, X. K.; Liu, J.; Zhang, L.; Dong, L. Z.; Li, S. L.; Kan, Y. H.; Li D. S.; Lan, Y. Q. Monometallic catalytic models hosted in stable metal- organic frameworks for tunable CO2 photoreduction. ACS Catal. 2019, 9, 1726–1732.

54

Zhang, R. Y.; Li, P. H.; Wang, F.; Ye, L. Q.; Gaur, A.; Huang, Z. A.; Zhao, Z. Y.; Bai, Y.; Zhou, Y. Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. Appl. Catal. B: Environ. 2019, 250, 273–279.

55

Yuan, J. L.; Liu, X.; Tang, Y. H.; Zeng, Y. X.; Wang, L. L.; Zhang, S. Q.; Cai, T.; Liu, Y. T.; Luo, S. L. Pei, Y.; Liu, C. B. Positioning cyanamide defects in g-C3N4: Engineering energy levels and active sites for superior photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 237, 24–31.

56

Huo, Y.; Zhang, J.; Dai, K.; Liang, C. Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity. ACS Appl. Energy Mater. 2021, 4, 956–968.

File
12274_2021_3519_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2021
Revised: 12 April 2021
Accepted: 13 April 2021
Published: 12 May 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21861001, 21931007, 21962002, 22001043, and 22071182), the National Key R & D Program of China (No. 2017YFA0700104), the Natural Science Foundation of Jiangxi Province (No. 20202BAB203001), the Science Foundation of Jiangxi Provincial Office of Education (No. GJJ190753), the 111 Project of China (No. D17003) and the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2018KJ129).

Return