Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
MXenes have shown record-breaking redox capacitance in aqueous electrolytes, but in a limited voltage window due to oxidation under anodic potential and hydrogen evolution under high cathodic potential. Coupling Ti3C2Tx MXene negative electrode with RuO2 or carbon-based positive electrodes expanded the voltage window in sulfuric acid electrolyte to about 1.5 V. Here, we present an asymmetric pseudocapacitor using abundant and eco-friendly vanadium doped MnO2 as the positive and Ti3C2Tx MXene as the negative electrode in a neutral 1 M Li2SO4 electrolyte. This all-pseudocapacitive asymmetric device not only uses a safer electrolyte and is a much less expensive counter-electrode than RuO2, but also can operate within a 2.1 V voltage window, leading to a maximum energy density of 46 Wh/kg. This study also demonstrates the possibility of using MXene electrodes to expand the working voltage window of traditional redox-capable materials.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.
Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.
Huang, Y. L.; Zeng, Y. X.; Yu, M. H.; Liu, P.; Tong, Y. X.; Cheng, F. L.; Lu, X. H. Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2018, 2, 1700230.
Gogotsi, Y. Energy storage wrapped up. Nature 2014, 509, 568–569.
Li, Q.; Wu, J. B.; Huang, L.; Gao, J. F.; Zhou, H. W.; Shi, Y. J.; Pan, Q. H.; Zhang, G.; Du, Y.; Liang, W. X. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J. Mater. Chem. A 2018, 6, 12115–12124.
Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.
Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.
Wang, S. P.; Zhao, X. L.; Yan, X. J.; Xiao, Z. W.; Liu, C. C.; Zhang, Y. J.; Yang, X. W. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. , Int. Ed. 2019, 58, 205–210.
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.
Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Huang, H.; Liu, B.; Zhang, H. S.; Xue, L.; Xia, H. Synergistic interface-assisted electrode-electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 32, 2005344.
Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid interface. Adv. Energy Mater. 2021, 11, 2003599.
Wu, J. B.; Gao, X.; Yu, H. M.; Ding, T. P.; Yan, Y. X.; Yao, B.; Yao, X.; Chen, D. C.; Liu, M. L.; Huang, L. A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 2016, 26, 6114–6120.
Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208.
Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.
Zhai, T.; Sun, S.; Liu, X. J.; Liang, C. L.; Wang, G. M.; Xia, H. Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 2018, 30, 1706640.
Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3–δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.
Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.
Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.
Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 2018, 12, 191–196.
Huang, L.; Guo, Z. F.; Liu, K. S.; Xiong, L. K.; Huang, L. W.; Gao, X.; Wu, J. B.; Wan, J.; Hu, Z. M.; Zhou, J. Large-scale synthesis of size- and thickness-tunable conducting polymer nanosheets via a salt-templated method. J. Mater. Chem. A 2019, 7, 24929–24936.
Yang, P. H.; Feng, C. Z.; Liu, Y. P.; Cheng, T.; Yang, X. L.; Liu, H. D.; Liu, K.; Fan, H. J. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 2020, 10, 2002898.
Zhu, S. J.; Li, L.; Liu, J. B.; Wang, H. T.; Wang, T.; Zhang, Y. X.; Zhang, L. L.; Ruoff, R. S.; Dong, F. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018, 12, 1033–1042.
Jia, H. A.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high- performance supercapacitors. Adv. Sci. 2018, 5, 1700887.
Hu, Z. M.; Chen, M.; Zhang, H.; Huang, L.; Liu, K. S.; Ling, Y. S.; Zhou, H.; Jiang, Z.; Feng, G.; Zhou, J. Stabilization of layered manganese oxide by substitutional cation doping. J. Mater. Chem. A 2019, 7, 7118–7127.
Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135.
Yu, P. P.; Zhang, Z. M.; Zheng, L. X.; Teng, F.; Hu, L. F.; Fang, X. S. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1601111.
Zhang, X. Y.; Hou, L. L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671.
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.
Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.
Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.
Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. F.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578–3586.
Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.
Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.
Ahmed, B.; Anjum, D. H.; Gogotsi, Y.; Alshareef, H. N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256.
Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.
Bao, W. Z.; Shuck, C. E.; Zhang, W. X.; Guo, X.; Gogotsi, Y.; Wang, G. X. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509.
Li, C.; Kota, S.; Hu, C.; Barsoum, M. W. On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Technol. 2016, 7, 301–306.
Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633– 7644.
Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 6, 17105.
Li, J. M.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X. H.; Wang, H. Z.; Alshareef, H. N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461.
Levitt, A. S.; Alhabeb, M.; Hatter, C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277.
Hu, Z. M.; Xiao, X.; Huang, L.; Chen, C.; Li, T. Q.; Su, T. C.; Cheng, X. F.; Miao, L.; Zhang, Y. R.; Zhou, J. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 2015, 7, 16094–16099.
Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432.
Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier S.; Barsoum, M. W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251.
Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.
Shen, J. L.; Yang, C. Y.; Li, X. W.; Wang, G. C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/ graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.
Su, F. H.; Miao, M. H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014, 25, 135401.
Jiang, H.; Li, C. Z.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807–812.
Cheng, Y. W.; Zhang, H. B.; Lu, S. T.; Varanasi, C. V.; Liu, J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 2013, 5, 1067–1073.