Journal Home > Volume 15 , Issue 1

MXenes have shown record-breaking redox capacitance in aqueous electrolytes, but in a limited voltage window due to oxidation under anodic potential and hydrogen evolution under high cathodic potential. Coupling Ti3C2Tx MXene negative electrode with RuO2 or carbon-based positive electrodes expanded the voltage window in sulfuric acid electrolyte to about 1.5 V. Here, we present an asymmetric pseudocapacitor using abundant and eco-friendly vanadium doped MnO2 as the positive and Ti3C2Tx MXene as the negative electrode in a neutral 1 M Li2SO4 electrolyte. This all-pseudocapacitive asymmetric device not only uses a safer electrolyte and is a much less expensive counter-electrode than RuO2, but also can operate within a 2.1 V voltage window, leading to a maximum energy density of 46 Wh/kg. This study also demonstrates the possibility of using MXene electrodes to expand the working voltage window of traditional redox-capable materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes

Show Author's information Jiabin Wu1,2Qun Li1Christopher E. Shuck2Kathleen Maleski2Husam N. Alshareef3Jun Zhou1Yury Gogotsi2( )Liang Huang1( )
Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute Drexel University Philadelphia Pennsylvania 19104 USA
Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia

Abstract

MXenes have shown record-breaking redox capacitance in aqueous electrolytes, but in a limited voltage window due to oxidation under anodic potential and hydrogen evolution under high cathodic potential. Coupling Ti3C2Tx MXene negative electrode with RuO2 or carbon-based positive electrodes expanded the voltage window in sulfuric acid electrolyte to about 1.5 V. Here, we present an asymmetric pseudocapacitor using abundant and eco-friendly vanadium doped MnO2 as the positive and Ti3C2Tx MXene as the negative electrode in a neutral 1 M Li2SO4 electrolyte. This all-pseudocapacitive asymmetric device not only uses a safer electrolyte and is a much less expensive counter-electrode than RuO2, but also can operate within a 2.1 V voltage window, leading to a maximum energy density of 46 Wh/kg. This study also demonstrates the possibility of using MXene electrodes to expand the working voltage window of traditional redox-capable materials.

Keywords: MXene, supercapacitors, manganese oxide, metal oxides, pseudocapacitors

References(58)

1

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

2

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

3

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

4

Huang, Y. L.; Zeng, Y. X.; Yu, M. H.; Liu, P.; Tong, Y. X.; Cheng, F. L.; Lu, X. H. Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2018, 2, 1700230.

5

Gogotsi, Y. Energy storage wrapped up. Nature 2014, 509, 568–569.

6

Li, Q.; Wu, J. B.; Huang, L.; Gao, J. F.; Zhou, H. W.; Shi, Y. J.; Pan, Q. H.; Zhang, G.; Du, Y.; Liang, W. X. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J. Mater. Chem. A 2018, 6, 12115–12124.

7

Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

8

Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

9

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

10

Wang, S. P.; Zhao, X. L.; Yan, X. J.; Xiao, Z. W.; Liu, C. C.; Zhang, Y. J.; Yang, X. W. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. , Int. Ed. 2019, 58, 205–210.

11

Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

12

Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Huang, H.; Liu, B.; Zhang, H. S.; Xue, L.; Xia, H. Synergistic interface-assisted electrode-electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 32, 2005344.

13

Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid interface. Adv. Energy Mater. 2021, 11, 2003599.

14

Wu, J. B.; Gao, X.; Yu, H. M.; Ding, T. P.; Yan, Y. X.; Yao, B.; Yao, X.; Chen, D. C.; Liu, M. L.; Huang, L. A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6 V) in an aqueous electrolyte. Adv. Funct. Mater. 2016, 26, 6114–6120.

15

Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200–11208.

16

Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

17

Zhai, T.; Sun, S.; Liu, X. J.; Liang, C. L.; Wang, G. M.; Xia, H. Achieving insertion-like capacity at ultrahigh rate via tunable surface pseudocapacitance. Adv. Mater. 2018, 30, 1706640.

18

Sun, S.; Zhai, T.; Liang, C. L.; Savilov, S. V.; Xia, H. Boosted crystalline/amorphous Fe2O3–δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy 2018, 45, 390–397.

19

Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

20

Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.

21

Huang, L.; Yao, X.; Yuan, L. Y.; Yao, B.; Gao, X.; Wan, J.; Zhou, P. P.; Xu, M.; Wu, J. B.; Yu, H. M. et al. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Mater. 2018, 12, 191–196.

22

Huang, L.; Guo, Z. F.; Liu, K. S.; Xiong, L. K.; Huang, L. W.; Gao, X.; Wu, J. B.; Wan, J.; Hu, Z. M.; Zhou, J. Large-scale synthesis of size- and thickness-tunable conducting polymer nanosheets via a salt-templated method. J. Mater. Chem. A 2019, 7, 24929–24936.

23

Yang, P. H.; Feng, C. Z.; Liu, Y. P.; Cheng, T.; Yang, X. L.; Liu, H. D.; Liu, K.; Fan, H. J. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv. Energy Mater. 2020, 10, 2002898.

24

Zhu, S. J.; Li, L.; Liu, J. B.; Wang, H. T.; Wang, T.; Zhang, Y. X.; Zhang, L. L.; Ruoff, R. S.; Dong, F. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 2018, 12, 1033–1042.

25

Jia, H. A.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high- performance supercapacitors. Adv. Sci. 2018, 5, 1700887.

26

Hu, Z. M.; Chen, M.; Zhang, H.; Huang, L.; Liu, K. S.; Ling, Y. S.; Zhou, H.; Jiang, Z.; Feng, G.; Zhou, J. Stabilization of layered manganese oxide by substitutional cation doping. J. Mater. Chem. A 2019, 7, 7118–7127.

27

Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135.

28

Yu, P. P.; Zhang, Z. M.; Zheng, L. X.; Teng, F.; Hu, L. F.; Fang, X. S. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1601111.

29

Zhang, X. Y.; Hou, L. L.; Ciesielski, A.; Samorì, P. 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 2016, 6, 1600671.

30

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

31

Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

32

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

33

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

34

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

35

Hu, M. M.; Hu, T.; Li, Z. J.; Yang, Y.; Cheng, R. F.; Yang, J. X.; Cui, C.; Wang, X. H. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 2018, 12, 3578–3586.

36

Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

37

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

38

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

39

Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

40

Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.

41

Ahmed, B.; Anjum, D. H.; Gogotsi, Y.; Alshareef, H. N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256.

42

Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.

43

Bao, W. Z.; Shuck, C. E.; Zhang, W. X.; Guo, X.; Gogotsi, Y.; Wang, G. X. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509.

44

Li, C.; Kota, S.; Hu, C.; Barsoum, M. W. On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Technol. 2016, 7, 301–306.

45

Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.

46

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633– 7644.

47

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 6, 17105.

48

Li, J. M.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X. H.; Wang, H. Z.; Alshareef, H. N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461.

49

Levitt, A. S.; Alhabeb, M.; Hatter, C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277.

50

Hu, Z. M.; Xiao, X.; Huang, L.; Chen, C.; Li, T. Q.; Su, T. C.; Cheng, X. F.; Miao, L.; Zhang, Y. R.; Zhou, J. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 2015, 7, 16094–16099.

51

Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422–2432.

52

Natu, V.; Benchakar, M.; Canaff, C.; Habrioux, A.; Célérier S.; Barsoum, M. W. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter 2021, 4, 1224–1251.

53

Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

54

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

55

Shen, J. L.; Yang, C. Y.; Li, X. W.; Wang, G. C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/ graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.

56

Su, F. H.; Miao, M. H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology 2014, 25, 135401.

57

Jiang, H.; Li, C. Z.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807–812.

58

Cheng, Y. W.; Zhang, H. B.; Lu, S. T.; Varanasi, C. V.; Liu, J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 2013, 5, 1067–1073.

File
12274_2021_3513_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 March 2021
Revised: 03 April 2021
Accepted: 08 April 2021
Published: 26 May 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972124, 51902115, and 51872101). Research reported in this publication was also supported by King Abdullah University of Science and Technology (KAUST) under the KAUST-Drexel Competitive Research Grant (No. OSR-CRG2016-2963 sub 11206). The authors express their gratitude to late Prof. J. Zhou for valuable discussions. The authors thank to the facility support of the Center for Nanoscale Characterization & Devices, WNLO-HUST and the Analysis and Testing Center, HUST.

Return