Journal Home > Volume 15 , Issue 1

Fine-tuning of the coordination environment of single-atom catalysts (SACs) is effective to optimize their catalytic performances, yet it remains challenging due to the vulnerability of SACs. Herein, we report a new approach to engineering the coordination environment of M-N-C (M = Fe, Co, and Ni) SACs by using glutamic acid as the N/C source and pyrolysis atmosphere as a regulator. Compared with that in N2, NH3 was able to promote the doping of N at T < 700 ℃ yet etch the N-species at higher temperatures, by which the M-N coordination number (CN) and the electronic structure were delicately tuned. It was found that the electron density of Ni single atoms increased with the decrease of Ni-N CN. As a consequence, the capability of Ni-N-C to dissociate H2 was greatly enhanced and a higher catalytic activity in chemoselective hydrogenation of functionalized nitroarenes was achieved. Moreover, this modulation method could be applied to other transition metals including Fe and Co. In particular, the as-synthesized Co-N-C SAC afforded a turnover frequency of 152.3 h−1 with 99% selectivity to 3-vinylaniline in the hydrogenation of 3-nitrostyrene, which was the highest ever reported thus far and was at least one order of magnitude more active than state-of-the-art noble-metal-free M-N-C catalysts, demonstrating the great potential of engineering the coordination environment of SACs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes

Show Author's information Dan Zhou1,2Leilei Zhang2( )Xiaoyan Liu2Haifeng Qi2Qinggang Liu2Ji Yang2Yang Su2Jingyuan Ma3Jianzhong Yin2( )Aiqin Wang2( )
School of Chemical Engineering State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory (SSRF, ZJLab) Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

Fine-tuning of the coordination environment of single-atom catalysts (SACs) is effective to optimize their catalytic performances, yet it remains challenging due to the vulnerability of SACs. Herein, we report a new approach to engineering the coordination environment of M-N-C (M = Fe, Co, and Ni) SACs by using glutamic acid as the N/C source and pyrolysis atmosphere as a regulator. Compared with that in N2, NH3 was able to promote the doping of N at T < 700 ℃ yet etch the N-species at higher temperatures, by which the M-N coordination number (CN) and the electronic structure were delicately tuned. It was found that the electron density of Ni single atoms increased with the decrease of Ni-N CN. As a consequence, the capability of Ni-N-C to dissociate H2 was greatly enhanced and a higher catalytic activity in chemoselective hydrogenation of functionalized nitroarenes was achieved. Moreover, this modulation method could be applied to other transition metals including Fe and Co. In particular, the as-synthesized Co-N-C SAC afforded a turnover frequency of 152.3 h−1 with 99% selectivity to 3-vinylaniline in the hydrogenation of 3-nitrostyrene, which was the highest ever reported thus far and was at least one order of magnitude more active than state-of-the-art noble-metal-free M-N-C catalysts, demonstrating the great potential of engineering the coordination environment of SACs.

Keywords: coordination environment, chemoselective hydrogenation, single-atom catalysts, Ni-N-C, pyrolysis atmosphere

References(66)

1

Downing, R. S.; Kunkeler, P. J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

2

Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

3

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

4

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemos­elective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

5

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

6

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

7

Liu, W. P.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

8

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single- atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

9

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

10

Boronat, M.; Concepción, P.; Corma, A.; González, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230–16237.

11

Serna, P.; Boronat, M.; Corma, A. Tuning the behavior of Au and Pt catalysts for the chemoselective hydrogenation of nitroaromatic compounds. Top. Catal. 2011, 54, 439–446.

12

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

13

Ren, Y. J.; Wei, H. S.; Yin, G. Z.; Zhang, L. L.; Wang, A. Q.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969–1972.

14

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

15

Zhang, L. L.; Wang, A. Q.; Wang, W. T.; Huang, Y. Q.; Liu, X. Y.; Miao, S.; Liu, J. Y.; Zhang, T. Co-N-C catalyst for C–C coupling reactions: On the catalytic performance and active sites. ACS Catal. 2015, 5, 6563–6572.

16

Chen, F.; Surkus, A. E.; He, L.; Pohl, M. M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. Selective catalytic hydrogenation of heteroarenes with N-graphene-modified cobalt nanoparticles (Co3O4-Co/NGr@α- Al2O3). J. Am. Chem. Soc. 2015, 137, 11718–11724.

17

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

18

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

19

Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

20

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

21

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

22

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

23

He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem. , Int. Ed. 2016, 55, 12582–12594.

24
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: 10.1007/s12274-020-3244-4.https://doi.org/10.1007/s12274-020-3244-4
DOI
25

Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem. , Int. Ed. 2016, 55, 15175–15179.

26

Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

27

Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

28

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem. , Int. Ed. 2018, 57, 1944–1948.

29

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

30

Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T. Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57–62.

31

Luo, W.; Wang, B.; Heron, C. G.; Allen, M. J.; Morre, J.; Maier, C. S.; Stickle, W. F.; Ji, X. L. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 2014, 14, 2225–2229.

32

Liu, J. W.; Webster, S.; Carroll, D. L. Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J. Phys. Chem. B 2005, 109, 15769–15774.

33

Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. , Int. Ed. 2018, 57, 7071–7075.

34

Chen, W.; Yang, H. P.; Chen, Y. Q.; Xia, M. W.; Chen, X.; Chen, H. P. Transformation of nitrogen and evolution of n-containing species during algae pyrolysis. Environ. Sci. Technol. 2017, 51, 6570–6579.

35

Wei, L. H.; Wen, L. N.; Yang, T. H.; Zhang, N. Nitrogen transformation during sewage sludge pyrolysis. Energy Fuels 2015, 29, 5088–5094.

36

Li, J.; Wang, Z. Y.; Yang, X.; Hu, L.; Liu, Y. W.; Wang, C. X. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR. J. Anal. Appl. Pyrol. 2007, 80, 247–253.

37

Chen, C. M.; Zhang, Q.; Zhao, X. C.; Zhang, B. S.; Kong, Q. Q.; Yang, M. G.; Yang, Q. H.; Wang, M. Z.; Yang, Y. G.; Schlögl, R. et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J. Mater. Chem. 2012, 22, 14076–14084.

38

Khusnutdinova, J. R.; Milstein, D. Metal-ligand cooperation. Angew. Chem. , Int. Ed. 2015, 54, 12236–12273.

39

Colpas, G. J.; Maroney, M. J.; Bagyinka, C.; Kumar, M.; Willis, W. S.; Suib, S. L.; Mascharak, P. K.; Baidya, N. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. 1991, 30, 920–928.

40

Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.

41

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. Atomically dispersed Ni(Ⅰ) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

42

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

43

Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

44

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. , Int. Ed. 2020, 59, 13057–13062.

45

Li, J. K.; Jiao, L.; Wegener, E.; Richard, L. L.; Liu, E. S.; Zitolo, A.; Sougrati, M. T.; Mukerjee, S.; Zhao, Z. P.; Huang, Y. et al. Evolution pathway from iron compounds to Fe1(Ⅱ)-N4 sites through gas-phase iron during pyrolysis. J. Am. Chem. Soc. 2020, 142, 1417–1423.

46

Shimizu, K. I.; Miyamoto, Y.; Satsuma, A. Size- and support- dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 2010, 270, 86–94.

47

Chen, B.; Dingerdissen, U.; Krauter, J. G. E.; Lansink Rotgerink, H. G. J.; Möbus, K.; Ostgard, D. J.; Panster, P.; Riermeier, T. H.; Seebald, S.; Tacke, T. et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A Gen. 2005, 280, 17–46.

48

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

49

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal– organic frameworks: Enhanced oxygen reduction performance. Angew. Chem. , Int. Ed. 2021, 60, 3212–3221.

50

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem. , Int. Ed. 2020, 59, 1961–1965.

51

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

52

Tomishige, K.; Nakagawa, Y.; Tamura, M. Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chem. 2017, 19, 2876–2924.

53

Niu, J.; Rao, B. K.; Jena, P. Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett. 1992, 68, 2277–2280.

54

Fu, T.; Wang, M.; Cai, W.; Cui, Y.; Gao, F.; Peng, L.; Chen, W.; Ding, W. Acid-Resistant Catalysis without Use of Noble Metals: Carbon nitride with underlying nickel. ACS Catal. 2014, 4, 2536-2543.

55

Wang, C.; Guan, E.; Wang, L.; Chu, X.; Wu, Z.; Zhang, J.; Yang, Z.; Jiang, Y.; Zhang, L.; Meng, X.; et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482-8488.

56

Yang, F.; Wang, M.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y.; Hou, L.; Li, Y.; Li, Z. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704-711.

57

Jiang, C.; Shang, Z.; Liang, X. Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 2015, 5, 4814-4818.

58

Ren, Y.; Wei, H.; Yin, G.; Zhang, L.; Wang, A.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969-1972.

59

Hahn, G.; Ewert, J. -K.; Denner, C.; Tilgner, D.; Kempe, R. A reusable mesoporous nickel nanocomposite catalyst for the selective hydrogenation of nitroarenes in the presence of sensitive functional groups. ChemCatChem 2016, 8, 2461-2465.

60

Kang, J.; Han, R.; Wang, J.; Yang, L.; Fan, G.; Li, F. In situ synthesis of nickel carbide-promoted nickel/carbon nanofibers nanocomposite catalysts for catalytic applications. Chem. Eng. J. 2015, 275, 36-44.

61

Zhang, P.; Zhao, Z.; Dyatkin, B.; Liu, C.; Qiu, J. In situ synthesis of cotton-derived Ni/C catalysts with controllable structures and enhanced catalytic performance. Green Chem. 2016, 18, 3594-3599.

62

Pisiewicz, S.; Formenti , D.; Surkus, A. -E.; Pohl, M. -M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M. Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem 2016, 8, 129-134.

63

Qu, Y.; Yang, H.; Wang, S.; Chen, T.; Wang, G. Hydrogenation of nitrobenzene to aniline catalyzed by C60-stabilized Ni. Catal. Commun. 2017, 97, 83-87.

64

Sun, X.; Olivos-Suarez, A. I.; Oar-Arteta, L.; Rozhko, E.; Osadchii, D.; Bavykina, A.; Kapteijn, F.; Gascon, J. Metal–organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem 2017, 9, 1854-1862.

65

Sun, X.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20-28.

66

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.

File
12274_2021_3511_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2021
Revised: 06 April 2021
Accepted: 08 April 2021
Published: 11 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (No. 2020YFA0710202), the National Natural Science Foundation of China (Nos. U1662130, 21690080, 21690084, and 21721004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020100). We also thank the BL 14W beamline at the Shanghai Synchrotron Radiation Facility (SSRF).

Return