Journal Home > Volume 15 , Issue 1

Multi-photon-pumped lasing based on metal-halide perovskites is promising for nonlinear optics and practical frequency- upconversion devices in integrated photonic systems. However, at present almost all the multi-photon-pumped lasing emissions from perovskite microcavities were limited for two-photon excitation, and also suffered from a compromise in room temperature or low temperature operation conditions. In this study, based on the vapor-phase epitaxial CsPbBr3 microplatelets with high crystallinity, self-formed high-quality microcavities, and great thermal stability, low-threshold and high-quality factor whispering gallery mode lasing was realized under single-, two-, and three-photon excitation, and the lasing action is very stable under continuous pulsed laser irradiation (~ 3.6 × 107 laser shots). More importantly, the three-photon-pumped lasing can be efficiently sustained at a high temperature of ~ 400 K, and the characteristic temperature was determined to be as high as ~ 152.6 K, indicating the highly temperature-insensitive gain threshold. Note that this is the first report on high-temperature three-photon-pumped lasing on perovskite microcavities. Moreover, an aggressive thermal cycling test (two cycles, 290−400−290 K) was further performed to indicate the stability and repeatability of the multi-photon-pumped lasing characteristics. It can be anticipated that the results obtained represent a significant step toward the temperature-insensitive frequency-upconversion lasing, inspiring the exploitation of advantageous perovskites for novel applications.

File
12274_2021_3508_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 January 2021
Revised: 07 April 2021
Accepted: 08 April 2021
Published: 30 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11774318, 12074347, 61935009, and 12004346) and the Open Fund of the State Key Laboratory of Integrated Optoelectronics (Nos. IOSKL2020KF04).

Return