Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In-plane birefringent materials present an effective modulation of the optical properties and more degrees of freedom for the signal detection in low dimension, and thus remain a hot topic in realizing the integrated, miniature, and flexible devices for multiple applications. Here, the artificial in-plane birefringence properties have been successfully achieved on a graphene oxide film by a novel femtosecond laser lithography method, which provides a high-speed, large-area, and regular subwavelength gratings (~ 380 nm) fabrication and photoreduction. The obtained sample manifests an evident optical birefringence (~ 0.18) and anisotropic photoresponse (~ 1.21) in the visible range, both of which can be significantly modulated by either the structural morphology or the degree of oxide reduction. Based on the analysis of effective-medium theory and measurements of angle-resolved polarized Raman spectroscopy, the artificial in-plane birefringence is originated from various optical responses of the periodic subwavelength structures for the incident light with different polarization states. This technique shows great advantages for the fabrication of integrated in-plane polarization-dependent devices, which is expected to solve the problems in this field, such as the deficient selection of materials, complex design of micro/nanostructure, and inflexible processing technology.
Rubin, N. A.; D'Aversa, G.; Chevalier, P.; Shi, Z. J.; Chen, W. T.; Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 2019, 365, eaax1839.
Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.
Vasefi, F.; MacKinnon, N.; Saager, R. B.; Durkin, A. J.; Chave, R.; Lindsley, E. H.; Farkas, D. L. Polarization-sensitive hyperspectral imaging in vivo: A multimode dermoscope for skin analysis. Sci. Rep. 2014, 4, 4924.
Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P. N.; Vélez, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.
Nicholls, L. H.; Rodríguez-Fortuño, F. J.; Nasir, M. E.; Córdova-Castro, R. M.; Olivier, N.; Wurtz, G. A.; Zayats, A. V. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 2017, 11, 628–633.
Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.
Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.
Wang, C.; Zhang, G. W.; Huang, S. Y.; Xie, Y. G.; Yan, H. G. The optical properties and plasmonics of anisotropic 2D materials. Adv. Opt. Mater. 2020, 8, 1900996.
Chen, S. Q.; Liu, W. W.; Li, Z. C.; Cheng, H.; Tian, J. G. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 2020, 32, 1805912.
Soukoulis, C. M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics. 2011, 5, 523–530.
Flanders, D. C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 1983, 42, 492–494.
Kikuta, H.; Ohira, Y.; Iwata, K. Achromatic quarter-wave plates using the dispersion of form birefringence. Appl. Opt. 1997, 36, 1566–1572.
Drevinskas, R.; Beresna, M.; Zhang, J. Y.; Kazanskii, A. G.; Kazansky, P. G. Ultrafast laser-induced metasurfaces for geometric phase manipulation. Adv. Opt. Mater. 2017, 5, 1600575.
Cerkauskaite, A.; Drevinskas, R.; Solodar, A.; Abdulhalim, I.; Kazansky, P. G. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 2017, 4, 2944–2951.
Sakakura, M.; Lei, Y. H.; Wang, L.; Yu, Y. H.; Kazansky, P. G. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light: Sci. Appl. 2020, 9, 15.
Yang, Y. S.; Liu, S. C.; Wang, Y.; Long, M. S.; Dai, C. M.; Chen, S. Y.; Zhang, B.; Sun, Z.; Sun, Z. Y.; Hu, C. G. et al. In-plane optical anisotropy of low-symmetry 2D GeSe. Adv. Opt. Mater. 2019, 7, 1801311.
Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.
Zheng, X. R.; Xu, B.; Li, S.; Lin, H.; Qiu, L.; Li, D.; Jia, B. H. Free-standing graphene oxide mid-infrared polarizers. Nanoscale 2020, 12, 11480–11488.
Mao, N. N.; Zhang, S. Q.; Wu, J. X.; Zhang, J.; Tong, L. M. Lattice vibration and Raman scattering in anisotropic black phosphorus crystals. Small Methods 2018, 2, 1700409.
Zou, T. T.; Zhao, B.; Xin, W.; Wang, Y.; Wang, B.; Zheng, X.; Xie, H. B.; Zhang, Z. Y.; Yang, J. J.; Guo, C. L. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light: Sci. Appl. 2020, 9, 69.
Zhao, Y.; Belkin, M. A.; Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 2012, 3, 870.
Chanda, D.; Shigeta, K.; Gupta, S.; Cain, T.; Carlson, A.; Mihi, A.; Baca, A. J.; Bogart, G. R.; Braun, P.; Rogers, J. A. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 2011, 6, 402–407.
Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D optical metamaterial made by self-assembly. Adv. Mater. 2012, 24, OP23–OP27.
Lin, H.; Sturmberg, B. C. P.; Lin, K. T.; Yang, Y. Y.; Zheng, X. R.; Chong, T. K.; de Sterke, C. M.; Jia, B. H. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276.
Jiang, H. B.; Zhang, Y. L.; Han, D. D.; Xia, H.; Feng, J.; Chen, Q. D.; Hong, Z. R.; Sun, H. B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv. Funct. Mater. 2014, 24, 4595–4602.
Jiang, L.; Wang, A. D.; Li, B.; Cui, T. H.; Lu, Y. F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light: Sci. Appl. 2018, 7, 17134.
Jiang, H. B.; Zhao, B.; Liu, Y.; Li, S. Y.; Liu, J.; Song, Y. Y.; Wang, D. D.; Xin, W.; Ren, L. Q. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J. Mater. Sci. 2020, 55, 480–497.
You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.
Zheng, X. R.; Jia, B. H.; Lin, H.; Qiu, L.; Li, D.; Gu, M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 2015, 6, 8433.
Öktem, B.; Pavlov, I.; Ilday, S.; Kalaycıoğlu, H.; Rybak, A.; Yavaş, S.; Erdoğan, M.; Ilday, F. Ö. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 2013, 7, 897–901.
Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 1965, 36, 3688–3689.
Bonse, J.; Höhm, S.; Kirner, S. V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures–A scientific evergreen. IEEE J. Sel. Top. Quant. Electron. 2017, 23, 9000615.
Huang, M.; Zhao, F. L.; Cheng, Y.; Xu, N. S.; Xu, Z. Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070.
Wang, L.; Chen, Q. D.; Cao, X. W.; Buividas, R.; Wang, X. W.; Juodkazis, S.; Sun, H. B. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light: Sci. Appl. 2017, 6, e17112.
Chen, J. N.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77–81.
Shvartzburg, A.; Petite, G.; Auby, N. S-polarized surface electromagnetic waves in inhomogeneous media: Exactly solvable models. J. Opt. Soc. Amer. B 1999, 16, 966–970.
Sun, Z. J.; Zuo, X. L.; Guan, T. P.; Chen, W. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons. Opt. Express 2014, 22, 4714–4722.
Bonse, J.; Graf, S. Maxwell meets Marangoni–a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 2020, 14, 2000215.
Shribak, M.; Oldenbourg, R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 2003, 42, 3009–3017.
Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.
Strong, V.; Dubin, S.; El-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395– 1403.
Guo, L.; Jiang, H. B.; Shao, R. Q.; Zhang, Y. L.; Xie, S. Y.; Wang, J. N.; Li, X. B.; Jiang, F.; Chen, Q. D.; Zhang, T. et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 2012, 50, 1667–1673.
Ning, J.; Hao, L.; Jin, M.; Qiu, X.; Shen, Y.; Liang, J.; Zhang, X.; Wang, B.; Li, X.; Zhi, L. A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv. Mater. 2017, 29, 1605028.
Qiao, H. Z.; Yang, J. J.; Wang, F.; Yang, Y.; Sun, J. L. Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces. Opt. Express 2015, 23, 26617– 26627.
Liu, Z. M.; Siegel, J.; Garcia-Lechuga, M.; Epicier, T.; Lefkir, Y.; Reynaud, S.; Bugnet, M.; Vocanson, F.; Solis, J.; Vitrant, G. et al. Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses. ACS Nano 2017, 11, 5031–5040.
Bricchi, E.; Klappauf, B. G.; Kazansky, P. G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 2004, 29, 119–121.