Journal Home > Volume 15 , Issue 1

Two-dimensional (2D) ferromagnets with out-of-plane (OOP) magnetic anisotropy are potential candidates for realizing the next-generation memory devices with ultra-low power consumption and high storage density. However, a scalable approach to synthesize 2D magnets with OOP anisotropy directly on the complimentary metal-oxide semiconductor (CMOS) compatible substrates has not yet been mainly explored, which hinders the practical application of 2D magnets. This work demonstrates a cascaded space confined chemical vapor deposition (CS-CVD) technique to synthesize 2D FexGeTe2 ferromagnets. The weight fraction of iron (Fe) in the precursor controls the phase purity of the as-grown FexGeTe2. As a result, high-quality Fe3GeTe2 and Fe5GeTe2 flakes have been grown selectively using the CS-CVD technique. Curie temperature (TC) of the as-grown FexGeTe2 can be up to ~ 280 K, nearly room temperature. The thickness and temperature-dependent magnetic studies on the Fe5GeTe2 reveal a 2D Ising to 3D XY behavior. Also, Terahertz spectroscopy experiments on Fe5GeTe2 display the highest conductivity among other FexGeTe2 2D magnets. The results of this work indicate a scalable pathway for the direct growth and integration of 2D ternary magnets on CMOS-based substrates to develop spintronic memory devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase-pure two-dimensional FexGeTe2 magnets with near-room- temperature TC

Show Author's information Govindan Kutty Rajendran Nair1,§Zhaowei Zhang2,§Fuchen Hou3,6,§Ali Abdelaziem1,4,7,§Xiaodong Xu5Steve Wu Qing Yang2Nan Zhang2Weiqi Li5Chao Zhu1Yao Wu1Heng Weiling1Lixing Kang1Teddy Salim1Jiadong Zhou1Lin Ke2Junhao Lin3,6Xingji Li5( )Weibo Gao2( )Zheng Liu1,8,9( )
School of Material Science and Engineering 50 Nanyang Ave 639798 Singapore
Division of Physics and Applied Physics School of Physical and Mathematical Sciences, Nanyang Technological University21 Nanyang Link 637371 Singapore
Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR)2 Fusionopolis Way, Singapore 138634 Singapore
School of Material Science and Engineering School of Physics, Harbin Institute of TechnologyHarbin 150001 China
Shenzhen Key Laboratory of for Advanced Quantum Functional Materials and Devices Southern University of Science and TechnologyShenzhen 518055 China
National Institute of Laser Enhanced Sciences (NILES) Cairo UniversityGiza 12613 Egypt
CINTRA CNRS/NTU/THALES UMI 3288Research Techno Plaza 637553 Singapore
School of Electrical and Electronic Engineering Nanyang Technological University50 Nanyang Ave 639798 Singapore

§ Govindan Kutty Rajendran Nair, Zhaowei Zhang, Fuchen Hou, and Ali Abdelaziem contributed equally to this work.

Abstract

Two-dimensional (2D) ferromagnets with out-of-plane (OOP) magnetic anisotropy are potential candidates for realizing the next-generation memory devices with ultra-low power consumption and high storage density. However, a scalable approach to synthesize 2D magnets with OOP anisotropy directly on the complimentary metal-oxide semiconductor (CMOS) compatible substrates has not yet been mainly explored, which hinders the practical application of 2D magnets. This work demonstrates a cascaded space confined chemical vapor deposition (CS-CVD) technique to synthesize 2D FexGeTe2 ferromagnets. The weight fraction of iron (Fe) in the precursor controls the phase purity of the as-grown FexGeTe2. As a result, high-quality Fe3GeTe2 and Fe5GeTe2 flakes have been grown selectively using the CS-CVD technique. Curie temperature (TC) of the as-grown FexGeTe2 can be up to ~ 280 K, nearly room temperature. The thickness and temperature-dependent magnetic studies on the Fe5GeTe2 reveal a 2D Ising to 3D XY behavior. Also, Terahertz spectroscopy experiments on Fe5GeTe2 display the highest conductivity among other FexGeTe2 2D magnets. The results of this work indicate a scalable pathway for the direct growth and integration of 2D ternary magnets on CMOS-based substrates to develop spintronic memory devices.

Keywords: van der Waals (vdW), terahertz, ferromagnetism, cascaded space confined chemical vapor deposition (CVD), out of plane anisotropy, iron germanium telluride

References(41)

1

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

2

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265– 269.

3

O'Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125– 3131.

4

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room- temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

5

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

6

May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

7

Wu, D.; Zhang, Z.; Li, L.; Zhang, Z. Z.; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films. Sci. Rep. 2015, 5, 12352.

8

Sbiaa, R.; Meng, H.; Piramanayagam, S. N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi Rapid Res. Lett. 2011, 5, 413–419.

9

Liu, T.; Cai, J. W.; Sun, L. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer. AIP Adv. 2012, 2, 032151.

10

Docherty, C. J.; Parkinson, P.; Joyce, H. J.; Chiu, M. H.; Chen, C. H.; Lee, M. Y.; Li, L. J.; Herz, L. M.; Johnston, M. B. Ultrafast transient terahertz conductivity of monolayer MoS2 and WSe2 grown by chemical vapor deposition. ACS Nano 2014, 8, 11147–11153.

11

Stahl, J.; Shlaen, E.; Johrendt, D. The van der Waals ferromagnets Fe5–δGeTe2 and Fe5–δxNixGeTe2-crystal structure, stacking faults, and magnetic properties. Z. Anorg. Allg. Chem. 2018, 644, 1923–1929.

12

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

13

Lloyd-Hughes, J.; Jeon, T. I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 2012, 33, 871–925.

14

Lu, W.; Ling, J. W.; Xiu, F. X.; Sun, D. Terahertz probe of photo­excited carrier dynamics in the Dirac semimetal Cd3As2. Phys. Rev. B 2018, 98, 104310.

15

McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612–620.

16

Siberchicot, B.; Jobic, S.; Carteaux, V.; Gressier, P.; Ouvrard, G. Band structure calculations of ferromagnetic chromium tellurides CrSiTe3 and CrGeTe3. J. Phys. Chem. 1996, 100, 5863–5867.

17

Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.

18

Kim, K.; Seo, J.; Lee, E.; Ko, K. T.; Kim, B. S.; Jang, B. G.; Ok, J. M.; Lee, J.; Jo, Y. J.; Kang, W. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 2018, 17, 794–799.

19

Matsuda, T.; Kanda, N.; Higo, T.; Armitage, N. P.; Nakatsuji, S.; Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 2020, 11, 909.

20

Huisman, T. J.; Mikhaylovskiy, R. V.; Telegin, A. V.; Sukhorukov, Y. P.; Granovsky, A. B.; Naumov, S. V.; Rasing, T.; Kimel, A. V. Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4. Appl. Phys. Lett. 2015, 106, 132411.

21

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room- temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

22

Liu, B. J.; Zou, Y. M.; Zhou, S. M.; Zhang, L.; Wang, Z.; Li, H. X.; Qu, Z.; Zhang, Y. H. Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2. Sci. Rep. 2017, 7, 6184.

23

Liu, B. J.; Zou, Y. M.; Zhang, L.; Zhou, S. M.; Wang, Z.; Wang, W. K.; Qu, Z.; Zhang, Y. H. Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Sci. Rep. 2016, 6, 33873.

24

Li, Z. X.; Xia, W.; Su, H.; Yu, Z. H.; Fu, Y. P.; Chen, L. M.; Wang, X.; Yu, N.; Zou, Z. Q.; Guo, Y. F. Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism. Sci. Rep. 2020, 10, 15345.

25

Kim, D.; Park, S.; Lee, J.; Yoon, J.; Joo, S.; Kim, T.; Min, K. J.; Park, S. Y.; Kim, C.; Moon, K. W. et al. Antiferromagnetic coupling of van der Waals ferromagnetic Fe3GeTe2. Nanotechnology 2019, 30, 245701.

26

Yi, J. Y.; Zhuang, H. L.; Zou, Q.; Wu, Z. M.; Cao, G. X.; Tang, S. W.; Calder, S. A.; Kent, P. R. C.; Mandrus, D.; Gai, Z. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 2016, 4, 011005.

27

Poulopoulos, P.; Krishnan, R.; Flevaris, N. K. Antiferromagnetic-like coupling evidence in a Pd-Ni multilayer with inverted hysteresis features. J. Magn. Magn. Mater. 1996, 163, 27–31.

28

Ziese, M.; Vrejoiu, I.; Hesse, D. Inverted hysteresis and giant exchange bias in La0.7Sr0.3MnO3/SrRuO3 superlattices. Appl. Phys. Lett. 2010, 97, 052504.

29

Geshev, J.; Viegas, A. D. C.; Schmidt, J. E. Unusual remanent magnetization of granular Co/Cu. J. Magn. Magn. Mater. 1999, 196–197, 126–127.

30

Tokura, Y.; Nagaosa, N. Orbital physics in transition-metal oxides. Science 2000, 288, 462–468.

31

Rödl, C.; Fuchs, F.; Furthmüller, J.; Bechstedt, F. Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 2009, 79, 235114.

32

Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space- confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.

33

Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

34

Tang, L.; Teng, C. J.; Luo, Y. T.; Khan, U.; Pan, H. Y.; Cai, Z. Y.; Zhao, Y.; Liu, B. L.; Cheng, H. M. Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research 2019, 2019, 2763704.

35

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

36

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

37

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

38

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

39

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Condens. Matter. Phys. 2009, 22, 022201.

40

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

41

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77, 3865.

File
12274_2021_3502_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 January 2021
Revised: 20 March 2021
Accepted: 06 April 2021
Published: 01 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

G. K., Z. Z., F. H., and A. L., contributed equally to this work. G. K and Z. L. conceived the research. G. K., W. Y., H. W. synthesized the samples. G. K., A. L., L. K., Z. N., and S. Y. performed the terahertz measurements and analyzed the THz results. F. H. and J. L. carried out STEM studies. Z. Z. and G. W. carried out the RMCD measurements. G. K. and T. S. performed the XPS characterizations. X. X. and X. L. carried out the DFT calculations. All authors helped to analyze data, discussed and interpreted detailed results, and co-wrote the manuscript.

This work was supported from National Research Foundation Singapore programme NRF-CRP22-2019-0007, NRF-CRP22- 2019-0004 and NRF-CRP21-2018-0007. This work was also supported by the Ministry of Education, Singapore, under its AcRF Tier 3 Programme 'Geometrical Quantum Materials' (MOE2018-T3-1-002), AcRF Tier 2 (MOE2019-T2-2-105) and AcRF Tier 1 RG4/17 and RG7/18. We also thank the funding support from National Research foundation (NRF-CRP22- 2019-0004).

Return