Journal Home > Volume 15 , Issue 1

Pristine and Bi-doped lanthanum titanium oxide (La2Ti2O7) nanosheets have been synthesized as photocatalysts for overall solar water splitting. The surface hole trap is a critical factor that limits the photocatalytic activity of pristine La2Ti2O7. Deposition of cobalt phosphate (Co-Pi) and platinum (Pt) nanoparticles on La2Ti2O7 cannot remove the surface traps although they are essential for enabling the oxygen and hydrogen evolution reactions. It is interesting that doping bismuth (Bi) into La2Ti2O7 nanosheets has eliminated the surface traps due to surface enrichment of Bi. The Co-Pi/Bi-La2Ti2O7/Pt nanosheets exhibit increasing photocatalytic activity toward overall water splitting with increasing the Bi-dopant level up to 5 at.%. Further increasing the Bi-dopant level leads to the formation of localized states above the valence band, leading to the lifetime reduction of photogenerated charge-carriers, and jeopardizing the photocatalytic activity. This work proposes an effective strategy to address the surface trapping and surface catalysis issues in the nanostructured metal oxide photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting

Show Author's information Xiaoyan Cai1,2Liang Mao1,2Mamoru Fujitsuka3Tetsuro Majima3Sujan Kasani4Nianqiang Wu5Junying Zhang2( )
School of Materials Science and Physics Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipment, China University of Mining and TechnologyXuzhou 221116 China
School of Physics Beihang UniversityBeijing 100191 China
The Institute of Scientific and Industrial Research (SANKEN) Osaka University, Mihogaoka 8-1, IbarakiOsaka 567-0047 Japan
Department of Mechanical and Aerospace Engineering West Virginia UniversityMorgantown, WV 26506-6106 USA
Department of Chemical Engineering University of Massachusetts AmherstAmherst, MA 01003-9303 USA

Abstract

Pristine and Bi-doped lanthanum titanium oxide (La2Ti2O7) nanosheets have been synthesized as photocatalysts for overall solar water splitting. The surface hole trap is a critical factor that limits the photocatalytic activity of pristine La2Ti2O7. Deposition of cobalt phosphate (Co-Pi) and platinum (Pt) nanoparticles on La2Ti2O7 cannot remove the surface traps although they are essential for enabling the oxygen and hydrogen evolution reactions. It is interesting that doping bismuth (Bi) into La2Ti2O7 nanosheets has eliminated the surface traps due to surface enrichment of Bi. The Co-Pi/Bi-La2Ti2O7/Pt nanosheets exhibit increasing photocatalytic activity toward overall water splitting with increasing the Bi-dopant level up to 5 at.%. Further increasing the Bi-dopant level leads to the formation of localized states above the valence band, leading to the lifetime reduction of photogenerated charge-carriers, and jeopardizing the photocatalytic activity. This work proposes an effective strategy to address the surface trapping and surface catalysis issues in the nanostructured metal oxide photocatalysts.

Keywords: photocatalyst, water splitting, co-catalyst, surface trap, solar fuel

References(44)

1

Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

2

Tofanello, A.; Shen, S. H.; de Souza, F. L.; Vayssieres, L. Strategies to improve the photoelectrochemical performance of hematite nanorod- based photoanodes. APL Mater. 2020, 8, 040905.

3

Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290– 12297.

4

Tang, P. Y.; Arbiol, J. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz. 2019, 4, 1256–1276.

5

Zachäus, C.; Abdi, F. F.; Peter, L. M.; Van De Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712–3719.

6

Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

7

Meng, F. K.; Hong, Z. L.; Arndt, J.; Li, M.; Zhi, M. J.; Yang, F.; Wu, N. Q. Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res. 2012, 5, 213–221.

8

Zhang, J. Y.; Dang, W. Q.; Ao, Z. M.; Cushing, S. K.; Wu, N. Q. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density- functional theory calculations. Phys. Chem. Chem. Phys. 2015, 17, 8994–9000.

9

Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 2002, 106, 6750– 6753.

10

Shirai, K.; Sugimoto, T.; Watanabe, K.; Haruta, M.; Kurata, H.; Matsumoto, Y. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 2016, 16, 1323–1327.

11

Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Recombination pathways in the degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 2005, 109, 977–980.

12

Carey, J. J.; McKenna, K. P. Screening doping strategies to mitigate electron trapping at anatase TiO2 surfaces. J. Phys. Chem. C 2019, 123, 22358–22367.

13

Chen, H. D.; Zhang, F.; Zhang, W. F.; Du, Y. G.; Li, G. Q. Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3. Appl. Phys. Lett. 2018, 112, 013901.

14

Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

15

Trześniewski, B. J.; Digdaya, I. A.; Nagaki, T.; Ravishankar, S.; Herraiz-Cardona, I.; Vermaas, D. A.; Longo, A.; Gimenez, S.; Smith, W. A. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes. Energy Environ. Sci. 2017, 10, 1517–1529.

16

Shi, Q.; Murcia-López, S.; Tang, P. Y.; Flox, C.; Morante, J. R.; Bian, Z. Y.; Wang, H.; Andreu, T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal. 2018, 8, 3331–3342.

17

Yatom, N.; Neufeld, O.; Caspary Toroker, M. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J. Phys. Chem. C 2015, 119, 24789–24795.

18

Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 2012, 109, 15640– 15645.

19

Kim, W. D.; Kim, J. H.; Lee, S.; Lee, S.; Woo, J. Y.; Lee, K.; Chae, W. S.; Jeong, S.; Bae, W. K.; McGuire, J. A. Role of surface states in photocatalysis: Study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation. Chem. Mater. 2016, 28, 962–968.

20

Cai, X. Y.; Zhu, M. S.; Elbanna, O. A.; Fujitsuka, M.; Kim, S.; Mao, L.; Zhang, J. Y.; Majima, T. Au nanorod photosensitized La2Ti2O7 nanosteps: Successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 2018, 8, 122–131.

21

Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: Governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 2016, 7, 1400–1405.

22

Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat. Commun. 2013, 4, 2500.

23

Mao, L.; Cai, X. Y.; Gao, H.; Diao, X. G.; Zhang, J. Y. A newly designed porous oxynitride photoanode with enhanced charge carrier mobility. Nano Energy 2017, 39, 172–182.

24

Pussacq, T.; Kabbour, H.; Colis, S.; Vezin, H.; Saitzek, S.; Gardoll, O.; Tassel, C.; Kageyama, H.; Laberty Robert, C.; Mentré, O. Reduction of Ln2Ti2O7 layered perovskites: A survey of the anionic lattice, electronic features, and potentials. Chem. Mater. 2017, 29, 1047–1057.

25

He, R. A.; Xu, D. F.; Cheng, B.; Yu, J. G.; Ho, W. Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 2018, 3, 464–504.

26

Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photo­catalysis. Adv. Mater. 2016, 28, 4059–4064.

27

Pan, Z. H.; Yanagi, R.; Wang, Q.; Shen, X.; Zhu, Q. H.; Xue, Y. D.; Röhr, J. A.; Hisatomi, T.; Domen, K.; Hu, S. Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy Environ. Sci. 2020, 13, 162–173.

28

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

29

Ren, X. N.; Hu, Z. Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; van Tendeloo, G. et al. Cocatalyzing Pt/PtO phase- junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 29687–29698.

30

Zhang, G. G.; Lan, Z. A.; Lin, L. H.; Lin, S.; Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066.

31

Park, H.; Kim, H. I.; Moon, G. H.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411–433.

32

Li, Z.; Zhang, L.; Liu, Y.; Shao, C. Y.; Gao, Y. Y.; Fan, F. T.; Wang, J. X.; Li, J. M.; Yan, J. C.; Li, R. G. et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem. , Int. Ed. 2020, 132, 945–952.

33

Li, S.; Hou, L. B.; Zhang, L. J.; Chen, L. P.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Direct evidence of the efficient hole collection process of the CoOx cocatalyst for photocatalytic reactions: A surface photovoltage study. J. Mater. Chem. A 2015, 3, 17820–17826.

34

Li, J. T.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F. K.; Bristow, A. D.; Manivannan, A.; Wu, N. Q. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449.

35

Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

36

Mao, L.; Cai, X. Y.; Yang, S. Q.; Han, K. L.; Zhang, J. Y. Black phosphorus-CdS-La2Ti2O7 ternary composite: Effective noble metal- free photocatalyst for full solar spectrum activated H2 production. Appl. Catal. B: Environ. 2019, 242, 441–448.

37

Han, K.; Kreuger, T.; Mei, B.; Mul, G. Transient behavior of Ni@NiOx functionalized SrTiO3 in overall water splitting. ACS Catal. 2017, 7, 1610–1614.

38

Murthy, D. H. K.; Matsuzaki, H.; Wang, Z.; Suzuki, Y.; Hisatomi, T.; Seki, K.; Inoue, Y.; Domen, K.; Furube, A. Origin of the overall water splitting activity of Ta3N5 revealed by ultrafast transient absorption spectroscopy. Chem. Sci. 2019, 10, 5353–5362.

39

Cai, X. Y.; Mao, L.; Yang, S. Q.; Han, K. L.; Zhang, J. Y. Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure. ACS Energy Lett. 2018, 3, 932–939.

40

Swinney, M. W.; McClory, J. W.; Petrosky, J. C.; Yang, S.; Brant, A. T.; Adamiv, V. T.; Burak, Y. V.; Dowben, P. A.; Halliburton, L. E. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies. J. Appl. Phys. 2010, 107, 113715.

41

Walsby, C. J.; Lees, N. S.; Tennant, W. C.; Claridge, R. F. C. 15 K EPR of an oxygen-hole boron centre, [BO4]0, in x-irradiated zircon. J. Phys. : Condens. Matter 2000, 12, 1441.

42

Chen, Y.; Abraham, M. M. Trapped-hole centers in alkaline-earth oxides. J. Phys. Chem. Solids 1990, 51, 747–764.

43

Nuttall, R. H. D.; Weil, J. A. The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2. I. [AlO]0. Can. J. Phys. 1981, 59, 1696–1708.

44

Jones, R. O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746

File
12274_2021_3498_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2021
Revised: 05 April 2021
Accepted: 06 April 2021
Published: 01 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This project is partially supported by the National Natural Science Foundation of China (Nos. 51972010 and 51472013), the Natural Science Foundation of Jiangsu Province (Youth Fund, Nos. BK20190640 and BK20190641), and the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS11). We thank the Open Sharing Fund for the large-scale instruments and equipment of China University of Mining and Technology (CUMT), and the high-performance computing platform of Beihang University.

Return