Journal Home > Volume 15 , Issue 1

Reflective dark field microscopy is used to observe the decrease in the light scattered from Ag nanoparticles immobilised on differing solid substrates. The nanoparticles are exposed to solutions containing halide ions, both at open circuit and under potentiostatic control, leading to the loss of the nanomaterial. By coupling optical and electrochemical techniques the physical origin of this transformation is demonstrated to be the electrochemical dissolution of the metal nanoparticles driven by electron transfer to ultra-trace dissolved oxygen. The dissolution kinetics of the surface-supported metal nanoparticles is compared on four substrate materials (i.e., glass, indium titanium oxide, glassy carbon and platinum) with different electrical conductivity. The three conductive substrates catalyse the redox-driven dissolution of Ag nanoparticles with the electrons transferred from the nanoparticles, via the macroscopic electrode to the dioxygen electron acceptor.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Substrate mediated dissolution of redox active nanoparticles; electron transfer over long distances

Show Author's information Ruo-Chen XieChristopher Batchelor-McAuleyMinjun YangRichard G. Compton( )
Department of Chemistry, Physical and Theoretical Chemistry Laboratory University of Oxford, South Parks RoadOxford OX1 3QZ UK

Abstract

Reflective dark field microscopy is used to observe the decrease in the light scattered from Ag nanoparticles immobilised on differing solid substrates. The nanoparticles are exposed to solutions containing halide ions, both at open circuit and under potentiostatic control, leading to the loss of the nanomaterial. By coupling optical and electrochemical techniques the physical origin of this transformation is demonstrated to be the electrochemical dissolution of the metal nanoparticles driven by electron transfer to ultra-trace dissolved oxygen. The dissolution kinetics of the surface-supported metal nanoparticles is compared on four substrate materials (i.e., glass, indium titanium oxide, glassy carbon and platinum) with different electrical conductivity. The three conductive substrates catalyse the redox-driven dissolution of Ag nanoparticles with the electrons transferred from the nanoparticles, via the macroscopic electrode to the dioxygen electron acceptor.

Keywords: optical microscopy, substrate, electrocatalysis, electrochemistry, metal nanoparticles, oxidative dissolution

References(65)

1

Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R. G. The fate of silver nanoparticles in authentic human saliva. Nanotoxicology 2018, 12, 305–311.

2

Batchelor-McAuley, C.; Tschulik, K.; Neumann, C. C. M.; Laborda, E.; Compton, R. G. Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. Int. J. Electrochem. Sci. 2014, 9, 1132–1138.

3

Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. Nanotoxicity— an electrochemist's perspective. Port. Electrochim. Acta 2013, 31, 249–256.

4

Kang, H.; Kim, Y.; Cheon, S.; Yi, G. R.; Cho, J. H. Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785.

5

Shin, D. Y.; Yi, G. R.; Lee, D.; Park, J.; Lee, Y. B.; Hwang, I.; Chun, S. Rapid two-step metallization through physicochemical conversion of Ag2O for printed "black" transparent conductive films. Nanoscale 2013, 5, 5043–5052.

6

Liang, G. J.; Mo, F. N.; Wang, D. H.; Li, X. L.; Huang, Z. D.; Li, H. F.; Zhi, C. Y. Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Stor. Mater. 2020, 25, 86–92.

7

Vanrenterghem, B.; Jovanovič, P.; Šala, M.; Bele, M.; Šelih, V. S.; Hodnik, N.; Breugelmans, T. Stability study of silver nanoparticles towards the halide electroreduction. Electrochim. Acta 2018, 286, 123–130.

8

Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

9

Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, Jr. G. E. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914.

10

Peretyazhko, T. S.; Zhang, Q. B.; Colvin, V. L. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes. Environ. Sci. Technol. 2014, 48, 11954–11961.

11

Martin, M. N.; Allen, A. J.; MacCuspie, R. I.; Hackley, V. A. Dissolution, agglomerate morphology, and stability limits of protein- coated silver nanoparticles. Langmuir 2014, 30, 11442–11452.

12

Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. S. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 2011, 45, 4422–4428.

13

Li, X.; Lenhart, J. J.; Walker, H. W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26, 16690–16698.

14

Ngamchuea, K.; Batchelor-McAuley, C.; Sokolov, S. V.; Compton, R. G. Dynamics of silver nanoparticles in aqueous solution in the presence of metal ions. Anal. Chem. 2017, 89, 10208–10215.

15

Ivanova, O. S.; Zamborini, F. P. Size-dependent electrochemical oxidation of silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 70–72.

16

Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Uhlemann, M.; Crossley, A.; Compton, R. G. The anodic stripping voltammetry of nanoparticles: Electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale 2013, 5, 4884–4893.

17

Ward Jones, S. E.; Campbell, F. W.; Baron, R.; Xiao, L.; Compton, R. G. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment. J. Phys. Chem. C 2008, 112, 17820–17827.

18

Pattadar, D. K.; Sharma, J. N.; Mainali, B. P.; Zamborini, F. P. Impact of the assembly method on the surface area-to-volume ratio and electrochemical oxidation potential of metal nanospheres. J. Phys. Chem. C 2019, 123, 24304–24312.

19

Ngamchuea, K.; Clark, R. O. D.; Sokolov, S. V.; Young, N. P.; Batchelor-McAuley, C.; Compton, R. G. Single oxidative collision events of silver nanoparticles: Understanding the rate-determining chemistry. Chem. –Eur. J. 2017, 23, 16085–16096.

20

Li, X. T.; Batchelor-McAuley, C.; Whitby, S. A. I.; Tschulik, K.; Shao, L. D.; Compton, R. G. Single nanoparticle voltammetry: Contact modulation of the mediated current. Angew. Chem. , Int. Ed. 2016, 55, 4296–4299.

21

Masitas, R. A.; Khachian, I. V.; Bill, B. L.; Zamborini, F. P. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles. Langmuir 2014, 30, 13075–13084.

22

Wonner, K.; Rurainsky, C.; Tschulik, K. Operando studies of the electrochemical dissolution of silver nanoparticles in nitrate solutions observed with hyperspectral dark-field microscopy. Front. Chem. 2020, 7, 912

23

Lemineur, J. F.; Noël, J. M.; Ausserré, D.; Combellas, C.; Kanoufi, F. Combining electrodeposition and optical microscopy for probing size-dependent single-nanoparticle electrochemistry. Angew. Chem. 2018, 130, 12174–12178.

24

Wang, W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 2018, 47, 2485–2508.

25

Lemineur, J. F.; Stockmann, T. J.; Médard, J.; Smadja, C.; Combellas, C.; Kanoufi, F. Optical nanoimpacts of dielectric and metallic nanoparticles on gold surface by reflectance microscopy: Adsorption or bouncing? J. Anal. Test. 2019, 3, 175–188.

26

Nizamov, S.; Mirsky, V. M. Wide-field surface plasmon resonance microscopy for in-situ characterization of nanoparticle suspensions. In In-situ Characterization Techniques for Nanomaterials. Kumar, C. S. S. R., Ed.; Springer: Berlin, Heidelberg, 2018; pp 61–105.

DOI
27

Nizamov, S.; Scherbahn, V.; Mirsky, V. M. Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles. In Proceedings of SPIE 10231, Optical Sensors 2017, Prague, Czech Republic, 2017, pp 102312F.

28

Sidorenko, I.; Nizamov, S.; Hergenröder, R.; Zybin, A.; Kuzmichev, A.; Kiwull, B.; Niessner, R.; Mirsky, V. M. Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim. Acta 2016, 183, 101–109.

29

Nizamov, S.; Kasian, O.; Mirsky, V. M. Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew. Chem. , Int. Ed. 2016, 55, 7247–7251.

30

Sun, L. L.; Fang, Y. M.; Li, Z. M.; Wang, W.; Chen, H. Y. Simultaneous optical and electrochemical recording of single nanoparticle electrochemistry. Nano Res. 2017, 10, 1740–1748.

31

Wang, J. G.; Fossey, J. S.; Li, M.; Xie, T.; Long, Y. T. Real-time plasmonic monitoring of single gold amalgam nanoalloy electro­chemical formation and stripping. ACS Appl. Mater. Interfaces 2016, 8, 8305–8314.

32

Munteanu, S.; Garraud, N.; Roger, J. P.; Amiot, F.; Shi, J.; Chen, Y.; Combellas, C.; Kanoufi, F. In situ, real time monitoring of surface transformation: Ellipsometric microscopy imaging of electrografting at microstructured gold surfaces. Anal. Chem. 2013, 85, 1965–1971.

33

Lemineur, J. F.; Noël, J. M.; Courty, A.; Ausserré, D.; Combellas, C.; Kanoufi, F. In situ optical monitoring of the electrochemical conversion of dielectric nanoparticles: From multistep charge injection to nanoparticle motion. J. Am. Chem. Soc. 2020, 142, 7937–7946.

34

Noël, J. M.; Vieira, M. M.; Brasiliense, V.; Lemineur, J. F.; Combellas, C.; Kanoufi, F. Effect of the driving force on nanoparticles growth and shape: An opto-electrochemical study. Nanoscale 2020, 12, 3227–3235.

35

Sundaresan, V.; Monaghan, J. W.; Willets, K. A. Visualizing the effect of partial oxide formation on single silver nanoparticle electro­dissolution. J. Phys. Chem. C 2018, 122, 3138–3145.

36

Lemineur, J. F.; Noël, J. M.; Combellas, C.; Kanoufi, F. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: From single to ensemble nanoparticles inspection. J. Electroanal. Chem. 2020, 872, 114043.

37

Sun, L. L.; Jiang, D.; Li, M.; Liu, T.; Yuan, L.; Wang, W.; Chen, H. Y. Collision and oxidation of single LiCoO2 nanoparticles studied by correlated optical imaging and electrochemical recording. Anal. Chem. 2017, 89, 6050–6055.

38

Batchelor-McAuley, C.; Martinez-Marrades, A.; Tschulik, K.; Patel, A. N.; Combellas, C.; Kanoufi, F.; Tessier, G.; Compton, R. G. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem. Phys. Lett. 2014, 597, 20–25.

39

Wonner, K.; Evers, M. V.; Tschulik, K. The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy. Electrochim. Acta 2019, 301, 458–464.

40

Brasiliense, V.; Patel, A. N.; Martinez-Marrades, A.; Shi, J.; Chen, Y.; Combellas, C.; Tessier, G.; Kanoufi, F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 2016, 138, 3478–3483.

41

Little, C. A.; Batchelor-McAuley, C.; Ngamchuea, K.; Lin, C. H.; Young, N. P.; Compton, R. G. Coupled optical and electrochemical probing of silver nanoparticle destruction in a reaction layer. ChemistryOpen 2018, 7, 370–380.

42

Munteanu, S.; Roger, J. P.; Fedala, Y.; Amiot, F.; Combellas, C.; Tessier, G.; Kanoufi, F. Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy. Faraday Discuss. 2013, 164, 241–258.

43

Patel, A. N.; Martinez-Marrades, A.; Brasiliense, V.; Koshelev, D.; Besbes, M.; Kuszelewicz, R.; Combellas, C.; Tessier, G.; Kanoufi, F. Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy. Nano Lett. 2015, 15, 6454–6463.

44

Brasiliense, V.; Clausmeyer, J.; Dauphin, A. L.; Noël, J. M.; Berto, P.; Tessier, G.; Schuhmann, W.; Kanoufi, F. Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles. Angew. Chem. , Int. Ed. 2017, 56, 10598–10601.

45

Lemineur, J. F.; Noël, J. M.; Combellas, C.; Kanoufi, F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. Nanoscale 2020, 12, 15128–15136.

46

Collins, S. S. E.; Wei, X. Z.; McKenzie, T. G.; Funston, A. M.; Mulvaney, P. Single gold nanorod charge modulation in an ion gel device. Nano Lett. 2016, 16, 6863–6869.

47

Novo, C.; Funston, A. M.; Gooding, A. K.; Mulvaney, P. Electro­chemical charging of single gold nanorods. J. Am. Chem. Soc. 2009, 131, 14664–14666.

48

Wonner, K.; Evers, M. V.; Tschulik, K. Simultaneous opto- and spectro-electrochemistry: Reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 2018, 140, 12658–12661.

49

Brasiliense, V.; Clausmeyer, J.; Berto, P.; Tessier, G.; Combellas, C.; Schuhmann, W.; Kanoufi, F. Monitoring cobalt-oxide single particle electrochemistry with subdiffraction accuracy. Anal. Chem. 2018, 90, 7341–7348.

50

Plieth, W. J. Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J. Phys. Chem. 1982, 86, 3166–3170.

51

Redmond, P. L.; Hallock, A. J.; Brus, L. E. Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett. 2005, 5, 131–135.

52

Scholl, J. A.; Koh, A. L.; Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421–427.

53

Zhang, Y. F.; Selva Kumar, A. K.; Li, D. L.; Yang, M. J.; Compton, R. G. Nanoparticle- and nanotube-modified electrodes: Response of drop-cast surfaces. ChemElectroChem 2020, 7, 4614–4624.

54

Kumar, A. K. S.; Zhang, Y. F.; Li, D. L.; Compton, R. G. A mini- review: How reliable is the drop casting technique?. Electrochem. Commun. ; 2020, 121, 106867.

55

Cinková, K.; Clark, M.; Sokolov, S. V.; Batchelor-McAuley, C.; Švorc, Ľ.; Compton, R. G. Improving limits of detection. Microdisc versus microcylinder electrodes. Electroanalysis 2017, 29, 1006–1013.

56

Zhang, H. Z.; Lin, C. H.; Sepunaru, L.; Batchelor-McAuley, C.; Compton, R. G. Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. J. Electroanal. Chem. 2017, 799, 53–60.

57

Matsuda, H.; Ayabe, Y. Zur theorie der randles-sevčikschen kathodenstrahl-polarographie. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59, 494–503.

58

Bulter, I. B.; Schoonen, M. A. A.; Rickard, D. T. Removal of dissolved oxygen from water: A comparison of four common techniques. Talanta 1994, 41, 211–215.

59

Gammons, C. H.; Yu, Y. M. The stability of aqueous silver bromide and iodide complexes at 25–300 ℃: Experiments, theory and geologic applications. Chem. Geol. 1997, 137, 155–173.

60

Joo, S.; Baldwin, D. F. Adhesion mechanisms of nanoparticle silver to substrate materials: Identification. Nanotechnology 2009, 21, 055204.

61

Wei, W.; Yuan, T. L.; Jiang, W. X.; Gao, J.; Chen, H. Y.; Wang, W. Accessing the electrochemical activity of single nanoparticles by eliminating the heterogeneous electrical contacts. J. Am. Chem. Soc. 2020, 142, 14307–14313.

62

Cloake, S. J.; Toh, H. S.; Lee, P. T.; Salter, C.; Johnston, C.; Compton, R. G. Anodic stripping voltammetry of silver nanoparticles: Aggregation leads to incomplete stripping. ChemistryOpen 2015, 4, 22–26.

63

Glasscott, M. W.; Pendergast, A. D.; Choudhury, M. H.; Dick, J. E. Advanced characterization techniques for evaluating porosity, nanopore tortuosity, and electrical connectivity at the single-nanoparticle level. ACS Appl. Nano Mater. 2019, 2, 819–830.

64

Hyde, M. E.; Banks, C. E.; Compton, R. G. Anodic stripping voltammetry: An AFM study of some problems and limitations. Electroanalysis 2004, 16, 345–354.

65

Kätelhön, E.; Compton, R. G. Understanding nano-impacts: Binary nature of charge transfer during mediated reactions. ChemElectroChem 2015, 2, 64–67

File
12274_2021_3497_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Rights and permissions

Publication history

Received: 28 January 2021
Revised: 09 March 2021
Accepted: 06 April 2021
Published: 01 June 2021
Issue date: January 2022

Copyright

© The Author(s) 2021

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return