AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices

Zhonghui SunFanyong Yan( )Jing XuHao ZhangLi Chen
State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering, Tiangong UniversityTianjin 300387 China
Show Author Information

Graphical Abstract

Abstract

Carbon dots (CDs), as a new kind of carbon-based luminescent nanomaterials, have drawn widespread attention in the fields of fluorescence sensing, optoelectronic devices, and biological imaging. This work uses citric acid (CA) and Nile Blue A (NBA) as precursors. By simply changing the solvent in the reaction, their bandgaps were systematically controlled, thereby successfully obtaining bright blue, yellow and red fluorescence emission CDs (B-, Y- and RCDs). The higher quantum yield (QY) of B-, Y- and RCDs are 64%, 57% and 51%, respectively. The selected precursors and different solvents are the key to the formation of three emission CDs. Detailed characterization and density functional theory (DFT) calculations further indicate that the difference in emission color of CDs is due to the size of the sp2 conjugate domain. In addition, we used multicolor CDs as fluorescent probes to investigate their performance in detection. Among them, BCDs and YCDs can detect Sudan Red I with high selectivity and sensitivity. In the concentration range of 0 to 80 μM, the detection limits are 56 and 41 nM, respectively. Multicolor emitting phosphors and fluorescent films are also obtained by mixing CDs with other matrices. Using Ultraviolet (UV) chip as the excitation source and combining with multicolor fluorescent film and a certain proportion of B-, Y-, and RCDs/epoxy resin composites, bright monochromatic light-emitting diodes (LEDs) and white LED (WLED) with high color rendering index (CRI) were prepared. The above results indicate that the multicolor CDs prepared by us have great application potential in the fields of food safety control and optical devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3495_MOESM1_ESM.pdf (2.1 MB)

References

1

Li, S. H.; Su, W.; Wu, H.; Yuan, T.; Yuan, C.; Liu, J.; Deng, G.; Gao, X. C.; Chen, Z. M.; Bao, Y. M. et al. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020, 4, 704–716.

2

Zhu, Z. J.; Zhai, Y. L.; Li, Z. H.; Zhu, P. Y.; Mao, S.; Zhu, C. Z.; Du, D.; Belfiore, L. A.; Tang, J. G.; Lin, Y. H. Red carbon dots: Optical property regulations and applications. Mater. Today 2019, 30, 52–79.

3

Huo, F.; Karmaker, P. G.; Liu, Y. H.; Zhao, B.; Yang, X. P. Preparation and biomedical applications of multicolor carbon dots: Recent advances and future challenges. Part. Part. Syst. Char. 2020, 37, 1900489.

4

Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179– 2195.

5

Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429–472.

6

Rosso, C.; Filippini, G.; Prato, M. Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 2020, 10, 8090–8105.

7

Rani, U. A.; Ng, L. Y.; Ng, C. Y.; Mahmoudi, E. A review of carbon quantum dots and their applications in wastewater treatment. Adv. Colloid Interface Sci. 2020, 278, 102124.

8

Chung, Y. J.; Kim, J.; Park, C. B. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano 2020, 14, 6470–6497.

9

Li, W. D.; Liu, Y.; Wang, B. Y.; Song, H. Q.; Liu, Z. Y.; Lu, S. Y.; Yang, B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chin. Chem. Lett. 2019, 30, 2323–2327.

10

He, P.; Shi, Y. X.; Meng, T.; Yuan, T.; Li, Y. C.; Li, X. H.; Zhang, Y.; Fan, L. Z.; Yang, S. H. Recent advances in white light-emitting diodes of carbon quantum dots. Nanoscale 2020, 12, 4826–4832.

11

Huang, Y. Y.; Lin, H.; Qiu, J.; Luo, Z. T.; Yao, Z. Q.; Liu, L. B.; Liu, H. B.; Tang, X. S.; Fu, X. X. High color rendering indices of white light-emitting diodes based on environmentally friendly carbon and AIZS nanoparticles. J. Mater. Chem. C 2020, 8, 7734–7740.

12

Walther, B. K.; Dinu, C. Z.; Guldi, D. M.; Sergeyev, V. G.; Creager, S. E.; Cooke, J. P.; Guiseppi-Elie, A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. Mater. Today 2020, 39, 23–46.

13

Song, H. Q.; Liu, X. J.; Wang, B. Y.; Tang, Z. Y.; Lu, S. Y. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Sci. Bull. 2019, 64, 1788– 1794.

14

Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.

15

Zheng, K.; Li, X.; Chen, M. J.; Gong, Y.; Tang, A. W.; Wang, Z. G.; Wei, Z. R.; Guan, L.; Teng, F. Controllable synthesis highly efficient red, yellow and blue carbon nanodots for photo-luminescent light- emitting devices. Chem. Eng. J. 2020, 380, 122503.

16

Wang, B. Y.; Li, J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Sci. Bull. 2019, 64, 1285–1292.

17

Jiao, Y.; Liu, Y.; Meng, Y. T.; Gao, Y. F.; Lu, W. J.; Liu, Y.; Gong, X. J.; Shuang, S. M.; Dong, C. Novel processing for color-tunable luminescence carbon dots and their advantages in biological systems. ACS Sustainable Chem. Eng. 2020, 8, 8585–8592.

18

Ding, Y. F.; Zheng, J. X.; Wang, J. L.; Yang, Y. Z.; Liu, X. G. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. J. Mater. Chem. C 2019, 7, 1502–1509.

19

Shen, C. L.; Lou, Q.; Liu, K. K.; Dong, L.; Shan, C. X. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today 2020, 35, 100954.

20

Kumari, R.; Pal, K.; Karmakar, P.; Sahu, S. K. pH-responsive Mn- doped carbon dots for white-light-emitting diodes, fingerprinting, and bioimaging. ACS Appl. Nano Mater. 2019, 2, 5900–5909.

21

Madhu, M.; Chen, T. H.; Tseng, W. L. White-light emission of single carbon dots prepared by hydrothermal carbonization of poly(diallyldimethylammonium chloride): Applications to fabrication of white-light-emitting films. J. Colloid Interface Sci. 2019, 556, 120–127.

22

Xu, A. L.; Wang, G.; Li, Y. Q.; Dong, H.; Yang, S. W.; He, P.; Ding, G. Q. Carbon-based quantum dots with solid-state photoluminescent: Mechanism, implementation, and application. Small 2020, 16, 2004621.

23

Miao, S. H.; Liang, K.; Zhu, J. J.; Yang, B.; Zhao, D. Y.; Kong, B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020, 33, 100879.

24

Zhi, B.; Yao, X. X.; Cui, Y.; Orr, G.; Haynes, C. L. Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale 2019, 11, 20411–20428.

25

Nguyen, H. A.; Srivastava, I.; Pan, D.; Gruebele, M. Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano 2020, 14, 6127–6137.

26

Karami, S.; Shamsipur, M.; Taherpour, A. A.; Jamshidi, M.; Barati, A. In situ chromophore doping: A new mechanism for the long- wavelength emission of carbon dots. J. Phys. Chem. C 2020, 124, 10638–10646.

27

Li, L. B.; Dong, T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. J. Mater. Chem. C 2018, 6, 7944–7970.

28

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

29

He, T.; Wang, G. N.; Liu, J. X.; Zhao, W. L.; Huang, J. J.; Xu, M. X.; Wang, J. P.; Liu, J. Dummy molecularly imprinted polymer based microplate chemiluminescence sensor for one-step detection of Sudan dyes in egg. Food Chem. 2019, 288, 347–353.

30

Zhao, D.; Zhang, Z. X.; Liu, X. M.; Zhang, R.; Xiao, X. C. Rapid and low-temperature synthesis of N, P co-doped yellow emitting carbon dots and their applications as antibacterial agent and detection probe to Sudan Red I. Mater. Sci. Eng. C 2021, 119, 111468.

31

Wu, M.; Sun, L. J.; Miao, K. S.; Wu, Y. Z.; Fan, L. J. Detection of Sudan dyes based on inner-filter effect with reusable conjugated polymer fibrous membranes. ACS Appl. Mater. Interfaces 2018, 10, 8287–8295.

32

Wang, L.; Yang, R.; Li, J. J.; Qu, L. B.; Harrington, P. D. B. High- sensitive electrochemical sensor of Sudan I based on template-directed self-assembly of graphene-ZnSe quantum dots hybrid structure. Sens. Actuators B Chem. 2015, 215, 181–187.

33

Su, A. M.; Zhong, Q. M.; Chen, Y. Y.; Wang, Y. L. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal. Chim. Acta 2018, 1023, 115–120.

34

Long, C. C.; Jiang, Z. X.; Shangguan, J. F.; Qing, T. P.; Zhang, P.; Feng, B. Applications of carbon dots in environmental pollution control: A review. Chem. Eng. J. 2021, 406, 126848.

35

Jia, R. N.; Jin, K. F.; Zhang, J. M.; Zheng, X. J.; Wang, S.; Zhang, J. Colorimetric and fluorescent detection of glutathione over cysteine and homocysteine with red-emitting N-doped carbon dots. Sens. Actuators B Chem. 2020, 321, 128506.

36

Cui, F. C.; Sun, J. D.; de Dieu Habimana, J.; Yang, X. X.; Ji, J.; Zhang, Y. Z.; Lei, H. T.; Li, Z. J.; Zheng, J. Y.; Fan, M. H. et al. Ultrasensitive fluorometric angling determination of staphylococcus aureus in vitro and fluorescence imaging in vivo using carbon dots with full-color emission. Anal. Chem. 2019, 91, 14681–14690.

37

Jiao, Y.; Meng, Y. T.; Lu, W. J.; Gao, Y. F.; Liu, Y.; Gong, X. J.; Liu, Y.; Shuang, S. M.; Dong, C. Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 2020, 219, 121170.

38

Ding, H.; Zhou, X. X.; Wei, J. S.; Li, X. B.; Qin, B. T.; Chen, X. B.; Xiong, H. M. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon 2020, 167, 322–344.

39

Wang, H.; Haydel, P.; Sui, N.; Wang, L. N.; Liang, Y.; Yu, W. W. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen. Nano Res. 2020, 13, 2492– 2499.

40

Li, X. X.; Wang, Z. F.; Liu, Y.; Zhang, W. G.; Zhu, C. F.; Meng, X. G. Bright tricolor ultrabroad-band emission carbon dots for white light- emitting diodes with a 96.5 high color rendering index. J. Mater. Chem. C 2020, 8, 1286–1291.

41

Zhou, Z. J.; Ushakova, E. V.; Liu, E. S.; Bao, X.; Li, D.; Zhou, D.; Tan, Z. N.; Qu, S. N.; Rogach, A. L. A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale 2020, 12, 10987–10993.

42

Shah, H.; Xie, W. J.; Wang, Y. Y.; Jia, X. R.; Nawaz, A.; Xin, Q.; Song, M. Y.; Gong, J. R. Preparation of blue- and green-emissive nitrogen-doped graphene quantum dots from graphite and their application in bioimaging. Mater. Sci. Eng. C 2021, 119, 111642.

43

Ma, P. P.; Sun, X. B.; Pan, W.; Yu, G. F.; Wang, J. P. Green and orange emissive carbon dots with high quantum yields dispersed in matrices for phosphor-based white LEDs. ACS Sustainable Chem. Eng. 2020, 8, 3151–3161.

44

Cai, W.; Zhang, T.; Xu, M.; Zhang, M. R.; Guo, Y. J.; Zhang, L. P.; Street, J.; Ong, W. J.; Xu, Q. Full color carbon dots through surface engineering for constructing white light-emitting diodes. J. Mater. Chem. C 2019, 7, 2212–2218.

45

Zhang, M.; Xue, J.; Zhu, Y.; Yao, C.; Yang, D. Y. Multiresponsive white-light emitting aerogel prepared with codoped lanthanide/ thymidine/carbon dots. ACS Appl. Mater. Interfaces 2020, 12, 22191–22199.

46

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

47

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2021, 8, 2001453.

48

Arcudi, F.; Đorđević, L.; Prato, M. Rationally designed carbon nanodots towards pure white-light emission. Angew. Chem. , Int. Ed. 2017, 56, 4170–4173.

49

Zu, F. L.; Yan, F. Y.; Bai, Z. J.; Xu, J. X.; Wang, Y. Y.; Huang, Y. C.; Zhou, X. G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914.

50

Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

51

Zhang, X. Q.; Yang, H. Y.; Wan, Z. J.; Su, T.; Zhang, X. J.; Zhuang, J. L.; Lei, B. F.; Liu, Y. L.; Hu, C. F. Self-quenching-resistant red emissive carbon dots with high stability for warm white light-emitting diodes with a high color rendering index. Adv. Opt. Mater. 2020, 8, 2000251.

Nano Research
Pages 414-422
Cite this article:
Sun Z, Yan F, Xu J, et al. Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices. Nano Research, 2022, 15(1): 414-422. https://doi.org/10.1007/s12274-021-3495-8
Topics:

1019

Views

82

Crossref

79

Web of Science

79

Scopus

2

CSCD

Altmetrics

Received: 31 January 2021
Revised: 26 March 2021
Accepted: 05 April 2021
Published: 29 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return