Journal Home > Volume 15 , Issue 1

Recent discoveries of intrinsic two-dimensional (2D) magnets open up vast opportunities to address fundamental problems in condensed matter physics, giving rise to applications from ultra-compact spintronics to quantum computing. The ever-growing material landscape of 2D magnets lacks, however, carbon-based systems, prominent in other areas of 2D research. Magnetization measurements of the Eu/graphene compound—a monolayer of the EuC6 stoichiometry—reveal the emergence of 2D ferromagnetism but detailed studies of competing magnetic states are still missing. Here, we employ element-selective X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) to establish the magnetic structure of monolayer EuC6. The system exhibits the anomalous Hall effect, negative magnetoresistance, and magnetization consistent with a ferromagnetic state but the saturation magnetic moment (about 2.5 µB/Eu) is way too low for the half-filled f-shells of Eu2+ ions. Combined XAS/XMCD studies at the Eu L3 absorption edge probe the EuC6 magnetism in high fields and reveal the nature of the missing magnetic moments. The results are set against XMCD studies in Eu/silicene and Eu/germanene to establish monolayer EuC6 as a prominent member of the family of Eu-based 2D magnets combining the celebrated graphene properties with a strong magnetism of europium.


menu
Abstract
Full text
Outline
About this article

Emerging 2D magnetic states in a graphene-based monolayer of EuC6

Show Author's information Ivan S. Sokolov1Dmitry V. Averyanov1Fabrice Wilhelm2Andrei Rogalev2Oleg E. Parfenov1Alexander N. Taldenkov1Igor A. Karateev1Andrey M. Tokmachev1Vyacheslav G. Storchak1
National Research Center "Kurchatov Institute" Kurchatov Sq. 1Moscow 123182 Russia
ESRF-The European Synchrotron CS 40220, 38043 Grenoble Cedex 9 France

Abstract

Recent discoveries of intrinsic two-dimensional (2D) magnets open up vast opportunities to address fundamental problems in condensed matter physics, giving rise to applications from ultra-compact spintronics to quantum computing. The ever-growing material landscape of 2D magnets lacks, however, carbon-based systems, prominent in other areas of 2D research. Magnetization measurements of the Eu/graphene compound—a monolayer of the EuC6 stoichiometry—reveal the emergence of 2D ferromagnetism but detailed studies of competing magnetic states are still missing. Here, we employ element-selective X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) to establish the magnetic structure of monolayer EuC6. The system exhibits the anomalous Hall effect, negative magnetoresistance, and magnetization consistent with a ferromagnetic state but the saturation magnetic moment (about 2.5 µB/Eu) is way too low for the half-filled f-shells of Eu2+ ions. Combined XAS/XMCD studies at the Eu L3 absorption edge probe the EuC6 magnetism in high fields and reveal the nature of the missing magnetic moments. The results are set against XMCD studies in Eu/silicene and Eu/germanene to establish monolayer EuC6 as a prominent member of the family of Eu-based 2D magnets combining the celebrated graphene properties with a strong magnetism of europium.

Keywords: graphene, monolayer, X-ray magnetic circular dichroism (XMCD), two-dimensional (2D) ferromagnetism, EuC6

References(49)

1

Cortie, D. L.; Causer, G. L.; Rule, K. C.; Fritzsche, H.; Kreuzpaintner, W.; Klose, F. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater. 2020, 30, 1901414.

2

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

3

Vaz, C. A. F.; Bland, J. A. C.; Lauhoff, G. Magnetism in ultrathin film structures. Rep. Prog. Phys. 2008, 71, 056501.

4

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

5

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

6

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

7

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

8

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

9

Song, T. C.; Fei, Z. Y.; Yankowitz, M.; Lin, Z.; Jiang, Q. N.; Hwangbo, K.; Zhang, Q.; Sun, B. S.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

10

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

11

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

12

Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; NavarroMoratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

13

Parfenov, O. E.; Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Sokolov, I. S.; Taldenkov, A. N.; Storchak, V. G. Layer-controlled laws of electron transport in two-dimensional ferromagnets. Mater. Today 2019, 29, 20–25.

14

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

15

Yu, W.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D.; Chen, Z. X. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

16

Tokmachev, A. M.; Averyanov, D. V.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Sokolov, I. S.; Kondratev, O. A.; Storchak, V. G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.

17

Tokmachev, A. M.; Averyanov, D. V.; Taldenkov, A. N.; Parfenov, O. E.; Karateev, I. A.; Sokolov, I. S.; Storchak, V. G. Lanthanide f7 metalloxenes—A class of intrinsic 2D ferromagnets. Mater. Horiz. 2019, 6, 1488–1496.

18

Tuček, J.; Błoński, P.; Ugolotti, J.; Swain, A. K.; Enoki, T.; Zbořil, R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem. Soc. Rev. 2018, 47, 3899–3990.

19

Mishra, S.; Beyer, D.; Eimre, K.; Kezilebieke, S.; Berger, R.; Gröning, O.; Pignedoli, C. A.; Müllen, K.; Liljeroth, P.; Ruffieux, P. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 2020, 15, 22–28.

20

Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes- Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

21

González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

22

Tuček, J.; Holá, K.; Bourlinos, A. B.; Błoński, P.; Bakandritsos, A.; Ugolotti, J.; Dubecký, M.; Karlický, F.; Ranc, V.; Čépe, K. et al. Room temperature organic magnets derived from sp3 functionalized graphene. Nat. Commun. 2017, 8, 14525.

23

Yang, H. X.; Chen, G.; Cotta, A. A. C.; N'Diaye, A. T.; Nikolaev, S. A.; Soares, E. A.; Macedo, W. A. A.; Liu, K.; Schmid, A. K.; Fert, A. et al. Significant Dzyaloshinskii-Moriya interaction at graphene- ferromagnet interfaces due to the Rashba effect. Nat. Mater. 2018, 17, 605–609.

24

Solis, D. A.; Hallal, A.; Waintal, X.; Chshiev, M. Proximity magnetoresistance in graphene induced by magnetic insulators. Phys. Rev. B 2019, 100, 104402.

25

Song, Y.; Liu, Y.; Feng, X. L.; Yan, F.; Zhang, W. Z. Spin-selectable, region-tunable negative differential resistance in graphene double ferromagnetic barriers. Phys. Chem. Chem. Phys. 2018, 20, 1560–1567.

26

Averyanov, D. V.; Sokolov, I. S.; Tokmachev, A. M.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-temperature magnetism in graphene induced by proximity to EuO. ACS Appl. Mater. Interfaces 2018, 10, 20767–20774.

27

Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 2016, 15, 711–716.

28

Cahen, S.; Lagrange, P.; Marêché, J. F.; Hérold, C. Analogies and differences between calcium-based and europium-based graphite intercalation compounds. C. R. Chimie 2013, 16, 385–390.

29

Sokolov, I. S.; Averyanov, D. V.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Tokmachev, A. M.; Storchak, V. G. 2D ferromagnetism in europium/graphene bilayers. Mater. Horiz. 2020, 7, 1372–1378.

30

Suematsu, H.; Ohmatsu, K.; Sugiyama, K.; Sakakibara, T.; Motokawa, M.; Date, M. High field magnetization of europium-graphite inter­calation compound C6Eu. Solid State Commun. 1981, 40, 241–243.

31

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

32

Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam M. H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370–6387.

33

Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Parfenov, O. E.; Kondratev, O. A.; Taldenkov, A. N.; Storchak, V. G. Engineering of magnetically intercalated silicene compound: An overlooked polymorph of EuSi2. Adv. Funct. Mater. 2017, 27, 1606603.

34

Parfenov, O. E.; Averyanov, D. V.; Tokmachev, A. M.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-mobility carriers in germanene derivatives. Adv. Funct. Mater. 2020, 30, 1910643.

35

Averyanov, D. V.; Sokolov, I. S.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Gargiani, P.; Valvidares, M.; Jaouen, N.; Parfenov, O. E.; Taldenkov, A. N. et al. Competing magnetic states in silicene and germanene 2D ferromagnets. Nano Res. 2020, 13, 3396–3402.

36

Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X. M.; Herng, T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Bukhvalov, D. W. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.

37

Kim, M.; Hupalo, M.; Tringides, M. C.; Schrunk, B.; Kaminski, A.; Ho, K. M.; Wang, C. Z. Electronic structure of double-layer epitaxial graphene on SiC(0001) modified by Gd intercalation. J. Phys. Chem. C 2020, 124, 28132–28138.

38

Schumacher, S.; Huttmann, F.; Petrović, M.; Witt, C.; Förster, D. F.; Vo-Van, C.; Coraux, J.; Martínez-Galera, A. J.; Sessi, V.; Vergara, I. et al. Europium underneath graphene on Ir(111): Intercalation mechanism, magnetism, and band structure. Phys. Rev. B 2014, 90, 235437.

39

Huttmann, F.; Klar, D.; Atodiresei, N.; Schmitz-Antoniak, C.; Smekhova, A.; Martínez-Galera, A. J.; Caciuc, V.; Bihlmayer, G.; Blügel, S.; Michely, T. et al. Magnetism in a graphene-4f-3d hybrid system. Phys. Rev. B 2017, 95, 075427.

40

Anderson, N. A.; Hupalo, M.; Keavney, D.; Tringides, M. C.; Vaknin, D. Intercalated europium metal in epitaxial graphene on SiC. Phys. Rev. Mater. 2017, 1, 054005.

41

Förster, D. F. EuO and Eu on Metal Crystals and Graphene: Interface Effects and Epitaxial Films. Ph. D. Dissertation, Universität zu Köln, Köln, 2011.

42

Liu, X. J.; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M. Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys. Rev. B 2010, 82, 245408.

43

Bedoya-Pinto, A.; Ji, J. R.; Pandeya, A.; Gargiani, P.; Valvidares, M.; Sessi, P.; Radu, F.; Chang, K.; Parkin, S. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. arXiv: 2006.07605v2, 2021.

43
Bedoya-Pinto, A.; Ji, J. -R.; Pandeya, A.; Gargiani, P.; Valvidares, M.; Sessi, P.; Radu, F.; Chang, K.; Parkin, S. Intrinsic 2D-XY ferromag­netism in a van der Waals monolayer. 2021, arXiv: 2006.07605v2. arXiv. org e-Print archive. https://arxiv.org/abs/2006.07605v1 (accessed Jan 12, 2021).
44

Averyanov, D. V.; Parfenov, O. E.; Tokmachev, A. M.; Karateev, I. A.; Kondratev, O. A.; Taldenkov, A. N.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Storchak, V. G. Fine structure of metal-insulator transition in EuO resolved by doping engineering. Nanotechnology 2018, 29, 195706.

45

Torelli, D.; Thygesen, K. S.; Olsen, T. Corrigendum: High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations (2D Mater. 6 045018). 2D Mater. 2020, 7, 049501.

46

Balan, A. P.; Radhakrishnan, S.; Woellner, C. F.; Sinha, S. K.; Deng, L.; de los Reyes, C.; Rao, B. M.; Paulose, M.; Neupane, R.; Apte, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602–609.

47

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

48

Spree, L.; Popov, A. A. Recent advances in single molecule magnetism of dysprosium-metallofullerenes. Dalton Trans. 2019, 48, 2861–2871.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2021
Revised: 03 March 2021
Accepted: 05 April 2021
Published: 04 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by NRC "Kurchatov Institute" (No. 1055 (characterization)), the Russian Foundation for Basic Research (grant 19-07-00249 (transport measurements)), and the Russian Science Foundation (grants 19-19-00009 (synthesis) and 20-79- 10028 (magnetization measurements)). D. V. A. acknowledges support from the President's scholarship (SP 1398.2019.5). The measurements have been carried out using equipment of the resource centers of electrophysical and electron microscopy techniques at NRC "Kurchatov Institute".

Return