Journal Home > Volume 15 , Issue 1

Two-dimensional (2D) selenium was synthesized successfully in 2017. Its advanced properties, including size-dependent bandgap, excellent environmental robustness, strong photoluminescence effect, anisotropic thermal conductivity, and high photoconductivity, render it and selenium-based composites a promising candidate for various device applications. These include batteries, modulators, photodetectors, and photothermal effects in medical applications. However, compared to other commonly used 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorus, 2D Se is much less known. Motivated by the need to overcome this lack of knowledge, this article focuses on recent progress and elucidates the crystal structure, synthesis methods, physical properties, applications, challenges, and prospects of 2D Se nanoflakes.


menu
Abstract
Full text
Outline
About this article

Two-dimensional selenium and its composites for device applications

Show Author's information Zhe Shi1,2,§Hongqiao Zhang3,§Karim Khan2Rui Cao2Kaikai Xu3( )Han Zhang2( )
School of Physics & New EnergyXuzhou University of TechnologyXuzhou221018China
Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsCollaborative Innovation Center for Optoelectronic Science and Technology and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen UniversityShenzhen518060China
State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China

§ Zhe Shi and Hongqiao Zhang contributed equally to this work.

Abstract

Two-dimensional (2D) selenium was synthesized successfully in 2017. Its advanced properties, including size-dependent bandgap, excellent environmental robustness, strong photoluminescence effect, anisotropic thermal conductivity, and high photoconductivity, render it and selenium-based composites a promising candidate for various device applications. These include batteries, modulators, photodetectors, and photothermal effects in medical applications. However, compared to other commonly used 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorus, 2D Se is much less known. Motivated by the need to overcome this lack of knowledge, this article focuses on recent progress and elucidates the crystal structure, synthesis methods, physical properties, applications, challenges, and prospects of 2D Se nanoflakes.

Keywords: two-dimensional materials, selenium, photodetectors, batteries, photothermal effect

References(236)

1

Liu, C.; Hu, T.; Wu, Y. B.; Gao, H.; Yang, Y. L.; Ren, W. 2D selenium allotropes from first principles and swarm intelligence. J. Phys. : Condens. Matter. 2019, 31, 235702.

2

Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two- dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.

3

Suslov, A.; Bikorimana, S.; Lama, P.; Sukharenko, V.; Walser, A.; Dorsinville, R. Synthesis of selenium nanoparticles and their nonlinear optical properties. J. Nonlinear. Opt. Phys. Mater. 2017, 26, 1750016.

4

Xing, C. Y.; Xie, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater. 2017, 5, 1700884.

5

Cheng, M. J.; Wu, S. Q.; Zhu, Z. Z.; Guo, G. Y. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium. Phy. Rev. B 2019, 100, 035202.

6

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

7

Zhao, W. S.; Shi, K. F.; Lu, Z. L. Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt. Lett. 2013, 38, 4342- 4345.

8

Echtermeyer, T. J.; Nene, P. S.; Trushin, M.; Gorbachev, R. V.; Eiden, A. L.; Milana, S.; Sun, Z.; Schliemann, J.; Lidorikis, E.; Novoselov, K. S. et al. Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 2014, 14, 3733-3742.

9

Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.

10

Geng, D. C.; Wang, H. P.; Wan, Y.; Xu, Z. P.; Luo, B. R.; Xu, J.; Yu, G. Direct top-down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 2015, 27, 4195-4199.

11

Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater. 2015, 27, 3760-3766.

12

Xu, Y. J.; Shi, Z.; Shi, X. Y.; Zhang, K.; Zhang, H. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale 2019, 11, 14491-14527.

13

Hu, H. G.; Shi, Z.; Khan, K.; Cao, R.; Liang, W. Y.; Tareen, A. K.; Zhang, Y.; Huang, W. C.; Guo, Z. N.; Luo, X. L. et al. Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 2020, 8, 5421-5441.

14

Lan, C. Y.; Shi, Z.; Cao, R.; Li, C.; Zhang, H. 2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale 2020, 12, 11784-11807.

15

Shi, Z.; Ren, X. H.; Qiao, H.; Cao, R.; Zhang, Y.; Qi, X.; Zhang, H. Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. J. Photoch. Photobio. C: Photoch. Rev. 2020, 43, 100354.

16

Zhang, H.; Lu, S. B.; Zheng, J.; Du, J.; Wen, S. C.; Tang, D. Y.; Loh, K. P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Exp. 2014, 22, 7249-7260.

17

Zhao, X. X.; Fu, D. Y.; Ding, Z. J.; Zhang, Y. Y.; Wan, D. Y.; Tan, S. J. R.; Chen, Z. X.; Leng, K.; Dan, J. D.; Fu, W. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482-490.

18

Shi, Z.; Cao, R.; Khan, K.; Tareen, A. K.; Liu, X. S.; Liang, W. Y.; Zhang, Y.; Ma, C. Y.; Guo, Z. N.; Luo, X. L. et al. Two-dimensional tellurium: Progress, challenges, and prospects. Nano-Micro Lett. 2020, 12, 99.

19

He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732-2753.

20

Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203-7212.

21

Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222-10229.

22

Sharma, R.; Pandey, J.; Sahoo, K. R.; Rana, K. S.; Biroju, R. K.; Theis, W.; Soni, A.; Narayanan, T. N. Spectroscopic correlation of chalcogen defects in atomically thin MoS2(1-x)Se2x alloys. J. Phy. Mater. 2020, 3, 045001.

23

Li, Y.; Xu, Y. H.; Wang, Z. H.; Bai, Y.; Zhang, K.; Dong, R. Q.; Gao, Y. N.; Ni, Q.; Wu, F.; Liu, Y. J. et al. Stable carbon-selenium bonds for enhanced performance in Tremella-like 2D chalcogenide battery anode. Adv. Energy Mater. 2018, 8, 1800927.

24

Jin, W. W.; Li, H. J.; Zou, J. Z.; Inguva, S.; Zhang, Q.; Zeng, S. Z.; Xu, G. Z.; Zeng, X. R. 2D ultrathin carbon nanosheets derived from interconnected Al-MOF as excellent hosts to anchor selenium for Li-Se battery. Mater. Lett. 2019, 252, 211-214.

25

Deng, N. P.; Feng, Y.; Wang, G.; Wang, X. X.; Wang, L. Y.; Li, Q. X.; Zhang, L. T.; Kang, W. M.; Cheng, B. W.; Liu, Y. Rational structure designs of 2D materials and their applications toward advanced lithium-sulfur battery and lithium-selenium battery. Chem. Eng. J. 2020, 401, 125976.

26

Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal- imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285-3291.

27

Li, Z. B.; Shao, J. D.; Luo, Q.; Yu, X. F.; Xie, H. H.; Fu, H. D.; Tang, S. Y.; Wang, H. Y.; Han, G. L.; Chu, P. K. Cell-borne 2D nanomaterials for efficient cancer targeting and photothermal therapy. Biomaterials 2017, 133, 37-48.

28

Ramírez-Montes, L.; López-Pérez, W.; González-Hernández, R.; Pinilla, C. Large thermoelectric figure of merit in hexagonal phase of 2D selenium and tellurium. Int. J. Quantum. Chem. 2020, 120, e26267.

29

Guo, S. D.; Wang, Y. H. Thermoelectric properties of orthorhombic group IV-VI monolayers from the first-principles calculations. J. App. Phy. 2017, 121, 034302.

30

Chen, J. H.; Hamann, D. M.; Choi, D.; Poudel, N.; Shen, L.; Shi, L.; Johnson, D. C.; Cronin, S. Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 2018, 18, 6876-6881.

31

Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

32

Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

33

Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard Ⅲ, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228-236.

34

Liu, Y. Y.; Wu, W. Z.; Goddard Ⅲ, W. A. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550-553.

35

Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44-126.

36

Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56-64.

37

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.

38

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.

39

Kasirga, T. S. Chemical vapor transport synthesis of a selenium- based two-dimensional material. Turk. J. Phys. 2018, 42, 293-301.

40

Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084-7089.

41

Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994-2008.

42

Sharma, A.; Joshi, A.; Verma, G.; Toor, A. P. Surfactant assisted liquid phase exfoliation of graphene via probe tip sonication. AIP Conf. Proc. 2015, 1675, 030047.

43

Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 2015, 15, 5449-5454.

44

Zhu, Y. J.; Hu, X. L. Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater. Lett. 2004, 58, 1234-1236.

45

Zhu, W.; Xu, H.; Wang, W.; Shi, J. Controlled synthesis of trigonal selenium nanowires via a facile solution route. Appl. Phys. A 2006, 83, 281-284.

46

Yang, Z. Q.; Sreeram, C.; Klabunde, K. J. A facile pathway to synthesize one-dimensional selenium (Se) with controllable morphology. Chem. Lett. 2009, 38, 252-253.

47

Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015, 13, 592-600.

48

Niu, Y. F.; Yang, Y.; Yang, W. T. Hydrothermal synthesis and nanomechanical performance of one-dimensional selenium nanostructures. Chin. J. Inorganic. Chem. 2016, 32, 2129-2135.

49

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Piao, J. Y.; Yao, T.; Wu, C. Z.; Hu, S. L.; Wei, S. Q. et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 2012, 3, 1057.

50

Xu, Y.; Zhao, W. W.; Xu, R.; Shi, Y. M.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803-9805.

51

Wang, F. M.; Li, Y. C.; Shifa, T. A.; Liu, K. L.; Wang, F.; Wang, Z. X.; Xu, P.; Wang, Q. S.; He, J. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem. , Int. Ed. 2016, 55, 6919-6924.

52

Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two- dimensional transition metal oxide nanosheets. Nat. Commun. 2014, 5, 3813.

53

Aerts, M.; Bielewicz, T.; Klinke, C.; Grozema, F. C.; Houtepen, A. J.; Schins, J. M.; Siebbeles, L. D. A. Highly efficient carrier multiplication in PbS nanosheets. Nat. Commun. 2014, 5, 3789.

54

Gao, S.; Sun, Y. F.; Lei, F. C.; Liang, L.; Liu, J. W.; Bi, W. T.; Pan, B. C.; Xie, Y. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew. Chem. , Int. Ed. 2014, 126, 13003-13007.

55

Zhu, Y. Q.; Cao, C. B.; Tao, S.; Chu, W. S.; Wu, Z. Y.; Li, Y. D. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 2014, 4, 5787.

56

Deng, M. M.; Kwac, K.; Li, M.; Jung, Y.; Park, H. G. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 2017, 17, 2342-2348.

57

Ahmad, S.; Guo, X. Rapid development in two-dimensional layered perovskite materials and their application in solar cells. Chin. Chem. Lett. 2018, 29, 657-663.

58

Chen, Y. N.; Yu, S.; Sun, Y.; Liang, Z. Q. Phase engineering in quasi-2D ruddlesden-popper perovskites. J. Phy. Chem. Lett. 2018, 9, 2627-2631.

59

Vu, Q. A.; Yu, W. J. Devices layer up for stability. Nat. Electron. 2018, 1, 98-99.

60

Shi, Z. M.; Cao, Z.; Sun, X. J.; Jia, Y. P.; Li, D. B.; Cavallo, L.; Schwingenschlögl, U. Uncovering the mechanism behind the improved stability of 2D organic-inorganic hybrid perovskites. Small 2019, 15, e1900462.

61

Wang, X. W.; Sun, Y. H.; Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 2019, 6, 042001.

62

Çakır, D.; Peeters, F. M.; Sevik, C. Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study. Appl. Phy. Lett. 2014, 104, 203110.

63

Oh, S.; Lim, J. Y.; Im, S.; Choi, H. J. Stability, efficiency, and mechanism of n-type doping by hydrogen adatoms in two-dimensional transition metal dichalcogenides. Phy. Rev. B 2019, 100, 085416.

64

Hemmat, Z.; Cavin, J.; Ahmadiparidari, A.; Ruckel, A.; Rastegar, S.; Misal, S. N.; Majidi, L.; Kumar, K.; Wang, S. X.; Guo, J. L. et al. Quasi-binary transition metal dichalcogenide alloys: Thermodynamic stability prediction, scalable synthesis, and application. Adv. Mater. 2020, 32, 1907041.

65

Iqbal, M. W.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlatt. Microst. 2020, 137, 106350.

66

Andharia, E.; Kaloni, T. P.; Salamo, G. J.; Yu, S. Q.; Churchill, H. O. H.; Barraza-Lopez, S. Exfoliation energy, quasiparticle band structure, and excitonic properties of selenium and tellurium atomic chains. Phy. Rev. B 2018, 98, 035420.

67

Ray, C.; Dutta, S.; Sarkar, S.; Sahoo, R.; Roy, A.; Pal, T. A facile synthesis of 1D nano structured selenium and Au decorated nano selenium: Catalysts for the clock reaction. Rsc. Adv. 2013, 3, 24313- 24320.

68

Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phy. Rev. Lett. 2008, 101, 196405.

69

Zuev, Y. M.; Chang, W.; Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phy. Rev. Lett. 2009, 102, 096807.

70

Flores, E.; Ares, J. R.; Castellanos-Gomez, A.; Barawi, M.; Ferrer, I. J.; Sánchez, C. Thermoelectric power of bulk black-phosphorus. App. Phys. Lett. 2015, 106, 022102.

71

Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phy. Lett. 2012, 101, 223104.

72

Hong, S.; Im, H.; Hong, Y. K.; Liu, N.; Kim, S.; Park, J. H. n-type doping effect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv. Electron. Mater. 2018, 4, 1800308.

73

Khosa, G. S.; Gupta, S.; Kumar, R. Modulation of electronic transport coefficients of monolayer MoSe2 by biaxial strain. AIP Conf. Proc. 2020, 2220, 100006.

74

Hong, Y.; Zhang, J. C.; Zeng, X. C. Thermal conductivity of monolayer MoSe2 and MoS2. J. Phy. Chem. C 2016, 120, 26067-26075.

75

Lim, D.; Kannan, E. S.; Lee, I.; Rathi, S.; Li, L. J.; Lee, Y.; Khan, M. A.; Kang, M.; Park, J.; Kim, G. H. High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnology 2016, 27, 225201.

76

Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358-363.

77

Huang, H. H.; Fan, X. F.; Singh, D. J.; Zheng, W. T. Recent progress of TMD nanomaterials: Phase transitions and applications. Nanoscale 2020, 12, 1247-1268.

78

Yu, Z.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

79

Ghosh, K.; Singisetti, U. Thermoelectric transport coefficients in mono-layer MoS2 and WSe2: Role of substrate, interface phonons, plasmon, and dynamic screening. J. Appl. Phy. 2015, 118, 135711.

80

Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683-1689.

81

Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single- layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.

82

Khalil, H. M. W.; Khan, M. F.; Eom, J.; Noh, H. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS. Appl. Mater. Interfaces 2015, 7, 23589-23596.

83

Kawai, H.; Sugahara, M.; Okada, R.; Maniwa, Y.; Yomogida, Y.; Yanagi, K. Thermoelectric properties of WS2 nanotube networks. Appl. Phys. Express 2017, 10, 015001.

84

Zhao, X. J.; Wan, H. Z.; Liang, P.; Wang, N. Z.; Wang, C.; Gan, Y.; Chen, X.; Tan, Q. Y.; Liu, X.; Zhang, J. et al. Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Res. 2020.

85

Wei, Q. L.; Li, R. P.; Lin, C. Q.; Han, A. L.; Nie, A. M.; Li, Y. R.; Li, L. J.; Cheng, Y. C.; Huang, W. Quasi-two-dimensional se-terminated bismuth oxychalcogenide (Bi2O2Se). ACS Nano 2019, 13, 13439- 13444.

86

Abutalib, M. M. Strain tunable electrical and optical properties of two dimensional tetragonal MgX (X = S, Se) monolayer semiconductors. Superlatt. Microst. 2020, 144, 106570.

87

Huang, H.; Ma, C. C.; Zhu, Z.; Yao, X.; Liu, Y.; Liu, Z.; Li, C. X.; Yan, Y. S. Insights into enhanced visible light photocatalytic activity of T-Se nanorods/BiOCl ultrathin nanosheets 1D/2D heterojunctions. Chem. Eng. J. 2018, 338, 218-229.

88

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

89

Hardie, D. G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774-785.

90

Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Buildings 2008, 40, 394-398.

91

Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem. 2010, 12, 539-554.

92

Mohsenian-Rad, A. H.; Wong, V. W. S.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart. Grid. 2010, 1, 320-331.

93

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712-717.

94

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

95

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.

96

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644-2647.

97

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

98

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125-1134.

99

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. , Int. Ed. 2013, 52, 13186-13200.

100

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751- 11787.

101

Hofmann, A. F.; Fronczek, D. N.; Bessler, W. G. Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries. J. Power Sources 2014, 259, 300-310.

102

Xu, R.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Demonstration of highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 4170-4179.

103

Hippauf, F.; Nickel, W.; Hao, G. P.; Schwedtmann, K.; Giebeler, L.; Oswald, S.; Borchardt, L.; Doerfler, S.; Weigand, J. J.; Kaskel, S. The importance of pore size and surface polarity for polysulfide adsorption in lithium sulfur batteries. Adv. Mater. Interfaces 2016, 3, 1600508.

104

Jia, L.; Wu, T. P.; Lu, J.; Ma, L.; Zhu, W. T.; Qiu, X. P. Polysulfides capture-copper additive for long cycle life lithium sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 30248-30255.

105

Dai, H. L.; Yuan, B. Y.; Bai, C. Y.; Lai, C.; Wang, C. Communication- direct observation of the shuttle phenomenon in lithium-sulfur batteries via the digital holographic method. J. Electrochem. Soc. 2018, 165, A2866-A2868.

106

Deng, J. N.; Li, J.; Guo, J. Q.; Zeng, M.; Zhao, D.; Yang, X. Vapor growth carbon fiber felt as an efficient interlayer for trapping polysulfide in lithium-sulfur battery. Int. J. Electrochem. Sci. 2018, 13, 3651-3659.

107

Mistry, A. N.; Mukherjee, P. P. "Shuttle" in polysulfide shuttle: Friend or foe? J. Phy. Chem. C 2018, 122, 23845-23851.

108

Liu, L. L.; Hou, Y. Y.; Wu, X. W.; Xiao, S. Y.; Chang, Z.; Yang, Y. Q.; Wu, Y. P. Nanoporous selenium as a cathode material for rechargeable lithium-selenium batteries. Chem. Commun. 2013, 49, 11515-11517.

109

Yang, C. P.; Xin, S.; Yin, Y. X.; Ye, H.; Zhang, J.; Guo, Y. G. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem. , Int. Ed. 2013, 52, 8363-8367.

110

Jiang, S. F.; Zhang, Z. A.; Lai, Y. Q.; Qu, Y. H.; Wang, X. W.; Li, J. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability. J. Power Sources 2014, 267, 394-404.

111

Liu, Y. X.; Si, L.; Zhou, X. S.; Liu, X.; Xu, Y.; Bao, J. C.; Dai, Z. H. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J. Mater. Chem. A 2014, 2, 17735-17739.

112

Jiang, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. Selenium in nitrogen- doped microporous carbon spheres for high-performance lithium- selenium batteries. J. Mater. Chem. A 2015, 3, 4539-4546.

113

Peng, X.; Wang, L.; Zhang, X. M.; Gao, B.; Fu, J. J.; Xiao, S.; Huo, K. F.; Chu, P. K. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode. J. Power Sources 2015, 288, 214-220.

114

Yi, Z. Q.; Yuan, L. X.; Sun, D.; Li, Z.; Wu, C.; Yang, W. J.; Wen, Y. W.; Shan, B.; Huang, Y. H. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon. J. Mater. Chem. A 2015, 3, 3059-3065.

115

Eftekhari, A. The rise of lithium-selenium batteries. Sustain. Energy Fuels 2017, 1, 14-29.

116

Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 2012, 134, 4505-4508.

117

Cui, Y. J.; Abouimrane, A.; Lu, J.; Bolin, T.; Ren, Y.; Weng, W.; Sun, C. J.; Maroni, V. A.; Heald, S. M.; Amine, K. (De) Lithiation mechanism of Li/SeSx (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 2013, 135, 8047-8056.

118

Han, K.; Liu, Z.; Shen, J. M.; Lin, Y. Y.; Dai, F.; Ye, H. Q. A free- standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv. Funct. Mater. 2015, 25, 455-463.

119

Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 46, 5926-5940.

120

Jun, L.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible li-ion batteries. Nano Lett. 2014, 14, 2597-2603.

121

Cai, Y.; Wang, H. E.; Huang, S. Z.; Jin, J.; Wang, C.; Yu, Y.; Li, Y.; Su, B. L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci. Rep. 2015, 5, 11557.

122

Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936-5942.

123

Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097-4111.

124

Kundu, D.; Krumeich, F.; Nesper, R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J. Power Sources 2013, 236, 112-117.

125

Zhang, Z.; Zhang, Z. Y.; Zhang, K.; Yang, X.; Li, Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer. RSC Adv. 2014, 4, 15489-15492.

126

Deng, Y. R.; Gong, L. L.; Ahmed, H.; Pan, Y. L.; Cheng, X. D.; Zhu, S. Y.; Zhang, H. P. N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries. Nano Res. 2020, 13, 967-974.

127

Wang, X. W.; Zhang, Z. A.; Qu, Y. H.; Wang, G. C.; Lai, Y. Q.; Li, J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for high performance lithium-selenium battery. J. Power Sources 2015, 287, 247-252.

128

Liu, Y. X.; Si, L.; Du, Y. C.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Strongly bonded selenium/microporous carbon nanofibers composite as a high-performance cathode for lithium-selenium batteries. J. Phys. Chem. C 2015, 119, 27316-27321.

129

Li, B.; Li, S. M.; Liu, J. H.; Wang, B.; Yang, S. B. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 2015, 15, 3073-3079.

130

Zhou, X. S.; Zhu, X. S.; Liu, X.; Xu, Y.; Liu, Y. X.; Dai, Z. H.; Bao, J. C. Ultralong cycle life sodium-ion battery anodes using a graphene-templated carbon hybrid. J. Phys. Chem. C 2014, 118, 22426-22431.

131

Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M.; Fang, Z. B.; Wang, C. Z.; Wei, Y. J.; Chen, G.; Zhang, D.; Sun, Z. H. et al. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries. Nano Energy 2018, 49, 137-146.

132

Wu, Y. P.; Jiang, C. Y.; Wan, C. R.; Fang, S. B.; Jiang, Y. Y. Nitrogen- containing polymeric carbon as anode material for lithium ion secondary battery. J. Appl. Polym. Sci. 2000, 77, 1735-1741.

DOI
133

Zhao, X. S.; Yin, L. C.; Yang, Z. Z.; Chen, G.; Yue, H. J.; Zhang, D.; Sun, Z. H.; Li, F. An alkali metal-selenium battery with a wide temperature range and low self-discharge. J. Mater. Chem. A 2019, 7, 21774-21782.

134

Kwon, H. T.; Park, C. M. Electrochemical characteristics of ZnSe and its nanostructured composite for rechargeable Li-ion batteries. J. Power Sources 2014, 251, 319-324.

135

Wang, J. Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S. L.; Liu, H. K.; Minett, A. I.; Chen, J. Development of MoS2-CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 2013, 3, 798-805.

136

Wang, R. H.; Xu, C. H.; Sun, J.; Liu, Y. Q.; Gao, L.; Yao, H. L.; Lin, C. C. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy 2014, 8, 183-195.

137

Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857-11862.

138

Zeng, L. X.; Fang, Y. X.; Xu, L. H.; Zheng, C.; Yang, M. Q.; He, J. F.; Xue, H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Rational design of few-layer MoSe2 confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766-6775.

139

Ali, Z.; Cao, C. B.; Li, J. L.; Wang, Y. L.; Cao, T.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F. K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216-222.

140

Han, G.; Chen, Z. G.; Ye, D. L.; Yang, L.; Wang, L. Z.; Drennan, J.; Zou, J. In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J. Mater. Chem. A 2014, 2, 7109-7116.

141

Yi, R.; Zai, J. T.; Dai, F.; Gordin, M. L.; Wang, D. H. Improved rate capability of Si-C composite anodes by boron doping for lithium-ion batteries. Electrochem. Commun. 2013, 36, 29-32.

142

Wang, B.; Zhong, S. P.; Ge, Y. Q.; Wang, H. D.; Luo, X. L.; Zhang, H. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 2020, 13, 891-918.

143

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.

144

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

145

Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800-2806.

146

Vabbina, P.; Choudhary, N.; Chowdhury, A. A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-Type MoS2/graphene schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206-15213.

147

Lou, Z.; Liang, Z. Z.; Shen, G. Z. Photodetectors based on two dimensional materials. J. Semicond. 2016, 37, 091001.

148

Feng, W.; Gao, F.; Hue, Y. X.; Dai, M. J.; Li, H.; Wang, L. F.; Hu, P. A. High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets. Nanotechnology 2018, 29, 445205.

149

Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Photodetectors based on two-dimensional materials and their van der Waals heterostructures. Acta Phy-Chim. Sin. 2019, 35, 1058-1077.

150

Liu, T. D.; Tong, L.; Huang, X. Y.; Ye, L. Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chin. Phys. B 2019, 28, 017302.

151

Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, e1901347.

152

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotech. 2010, 5, 391-400.

153

Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P.; Gatti, F.; Koppens, F. H. L. Hybrid graphene- quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 2012, 7, 363-368.

154

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

155

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 2014, 9, 780-793.

156

Li, X. M.; Rui, M. C.; Song, J. Z.; Shen, Z. H.; Zeng, H. B. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929-4947.

157

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.

158

Fang, X. S.; Bando, Y.; Gautam, U. K.; Zhai, T. Y.; Zeng, H. B.; Xu, X. J.; Liao, M. Y.; Golberg, D. ZnO and ZnS nanostructures: Ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci. 2009, 34, 190-223.

159

Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D. A comprehensive review of one-dimensional metal- oxide nanostructure photodetectors. Sensors 2009, 9, 6504-6529.

160

Weintraub, B.; Zhou, Z. Z.; Li, Y. H.; Deng, Y. L. Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2010, 2, 1573-1587.

161

Cunningham, P. D.; Boercker, J. E.; Foos, E. E.; Lumb, M. P.; Smith, A. R.; Tischler, J. G.; Melinger, J. S. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 2011, 11, 3476-3481.

162

Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.

163

Yang, S. X.; Tongay, S.; Yue, Q.; Li, Y. T.; Li, B.; Lu, F. Y. High- performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 2014, 4, 5442.

164

Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.

165

Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

166

Wang, X. T.; Cui, Y.; Li, T.; Lei, M.; Li, J. B.; Wei, Z. M. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 2019, 7, 1801274.

167

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

168

Lu, C. P.; Li, G. H.; Mao, J. H.; Wang, L. M.; Andrei, E. Y. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 2014, 14, 4628-4633.

169

Yao, L. F.; Lou, X.; Sui, N.; Liu, Q. H.; Zhang, Y.; Chi, X. C.; Kang, Z. H.; Zhou, Q.; Zhang, H. Z.; Wang, Y. H. Studying of photo-excitation dynamics and photodetector based on MoSe2 nanosheet. Opt. Mater. 2019, 98, 109429.

170

Nanot, S.; Cummings, A. W.; Pint, C. L.; Ikeuchi, A.; Akiho, T.; Sueoka, K.; Hauge, R. H.; Léonard, F.; Kono, J. Broadband, polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense and aligned carbon nanotubes. Sci. Rep. 2013, 3, 1335.

171
Zubair, A.; Tsentalovich, D. E.; Young, C. C.; Fujimura, N.; Wang, X.; He, X. W.; Gao, W. L.; Kawano, Y.; Pasquali, M.; Kono, J. Ultrabroadband, lightweight, flexible, and polarization sensitive photodetector based on carbon nanotube fibers. In Proceedings of 2015 Conference on Lasers and Electro-Optics, San Jose, USA, 2015.https://doi.org/10.1364/CLEO_SI.2015.SM3H.5
DOI
172

Chu, J. K.; Wang, Z. W.; Zhang, Y. J.; Liu, Z.; Wang, Y. L. Integrated blue-sensitive polarization-dependent photodetector. J. Micro/Nanolith. MEMS MOEMS 2013, 12, 033005.

173

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.

174

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Liu, Y. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780-1786.

175

Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399-2411.

176

Mukherjee, B.; Cai, Y. Q.; Tan, H. R.; Feng, Y. P.; Tok, E. S.; Sow, C. H. NIR schottky photodetectors based on individual single- crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 2013, 5, 9594-9604.

177

Zhou, X.; Hu, X. Z.; Zhou, S. S.; Zhang, Q.; Li, H. Q.; Zhai, T. Y. Optoelectronic materials: Ultrathin 2D GeSe2 rhombic flakes with high anisotropy realized by van der Waals epitaxy. Adv. Funct. Mater. 2017, 27, 1770279.

178

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. All-layered 2D optoelectronics: A high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823.

179

Devi, A.; Banotra, A.; Kumar, S.; Kapoor, A. K.; Padha, N. SnTexSe1−x alloy: An effective alternative to SnSe nano-crystalline thin films for optoelectronic applications. J. Electron. Mater. 2019, 48, 4335-4341.

180

Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988-5994.

181

Yang, Z. B.; Jie, W. J.; Mark, C. H.; Lin, S. H.; Lin, H. H.; Yang, X. F.; Yan, F.; Lau, S. P.; Hao, J. H. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 2017, 11, 4225-4236.

182

Yu, M. M.; Li, H.; Liu, H.; Qin, F. L.; Gao, F.; Hu, Y. X.; Dai, M. J.; Wang, L. F.; Feng, W.; Hu, P. A. Synthesis of two-dimensional alloy Ga0.84In0.16Se nanosheets for high-performance photodetector. ACS Appl. Mater. Interfaces 2018, 10, 43299-43304.

183

Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Photoresponse: Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1146.

184

Lai, K. W. C.; Ning, X.; Chen, H. Z.; Fung, C. K. M.; Chen, L. L. Development of graphene-based optical detectors for infrared sensing applications. IEEE 2011, 398-401.

185

Fan, Y. C.; Wei, Z. Y.; Zhang, Z. R.; Li, H. Q. Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt. Lett. 2013, 38, 5410-5413.

186
Marini, A.; Silveiro, I.; de Abajo, J. G. Infrared spectroscopy with tunable graphene plasmons (Presentation Recording). In Proceedings of SPIE Volume 9544, Metamaterials, Metadevices, and Metasystems, San Diego, California, United States, 2015.https://doi.org/10.1117/12.2190264
DOI
187

Ying, X. X.; Pu, Y.; Li, Z.; Liu, Z. J.; Jiang, Y. D. Absorption enhancement of graphene salisbury screen in the mid-infrared regime. J. Opt. 2015, 44, 59-67.

188

Thomas, L.; Sorathiya, V.; Patel, S. K.; Guo, T. J. Graphene-based tunable near-infrared absorber. Microw. Opt. Technol. Lett. 2019, 61, 1161-1165.

189

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Author Correction: Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2019, 10, 3457.

190

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.

191

Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414-6417.

192

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide- integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247-252.

193

Xu, M.; Gu, Y. Q.; Peng, R. M.; Youngblood, N.; Li, M. Black phosphorus mid-infrared photodetectors. Appl. Phy. B 2017, 123, 130.

194

Zhang, S. Q.; Liu, Y.; Shao, Y.; Fang, C. Z.; Han, G. Q.; Zhang, J. C.; Hao, Y. Simulation investigation of strained black phosphorus photodetector for middle infrared range. Opt. Express 2017, 25, 24705-24713.

195

Hou, C. J.; Yang, L. J.; Li, B.; Zhang, Q. H.; Li, Y. F.; Yue, Q. Y.; Wang, Y.; Yang, Z.; Dong, L. X. Multilayer black phosphorus near- infrared photodetectors. Sensors 2018, 18, 1668.

196

Venuthurumilli, P. K.; Ye, P. D.; Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861-4867.

197

Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater. 2020, 8, 1901567.

198

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.

199

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

200

Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53-60.

201

Yang, W. J.; Lee, C. W.; Kim, D. S.; Kim, H. S.; Kim, J. H.; Choi, H. Y.; Choi, Y. J.; Kim, J. H.; Park, K.; Cho, M. H. Tuning of topological dirac states via modification of van der Waals gap in strained ultrathin Bi2Se3 films. J. Phys. Chem. C 2018, 122, 23739- 23748.

202

Liu, S. Q.; Hong, Z. Y.; Qiao, H.; Hu, R.; Ma, Q.; Huang, K.; Li, H. X.; Qi, X. Two-dimensional Bi2Se3 nanosheet based flexible infrared photodetector with pencil-drawn graphite electrodes on paper. Nanoscale Adv. 2020, 2, 906-912.

203

Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Dong, Z. J.; Zhang, Y. P.; Dong, B. Q.; Zhang, X. W.; Zhang, H. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 2019, 3, 1900349.

204

Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; Xie, Z. J.; Zhang, D. W.; Zhao, J. Q. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485-1508.

205

Lin, Y. H.; Yang, C. Y.; Liou, J. H.; Yu, C. P.; Lin, G. R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 2013, 21, 16763-16776.

206

Bao, Q. L.; Zhang, H.; Yang, J. X.; Wang, S.; Tong, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010, 20, 782-791.

207

Luo, Z. Q.; Zhou, M.; Weng, J.; Huang, G. M.; Xu, H. Y.; Ye, C. C.; Cai, Z. P. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett. 2010, 35, 3709-3711.

208

Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Wang, F.; Ferrari, A. C. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 2010, 97, 203106.

209

Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803-810.

210

Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K. M. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 2012, 20, 19463-19473.

211

Jhon, Y. I.; Lee, J.; Seo, M.; Lee, J. H.; Jhon, Y. M. van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorber. Adv. Opt. Mater. 2019, 7, 1801741.

212

Liu, J. H.; Li, X. H.; Guo, Y. X.; Qyyum, A.; Shi, Z. J.; Feng, T. C.; Zhang, Y.; Jiang, C. X.; Liu, X. Harmonic mode-locking: SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1970206.

213

Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high- responsivity 2D photodetectors. Small 2016, 12, 5000-5007.

214

Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer selenium- doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 2017, 5, 6129-6135.

215

Wang, K. P.; Zhang, X. Y.; Kislyakov, I. M.; Dong, N. N.; Zhang, S. F.; Wang, G. Z.; Fan, J. T.; Zou, X.; Du, J.; Leng, Y. X. et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985.

216

Guo, J.; Zhao, J. L.; Huang, D. Z.; Wang, Y. Z.; Zhang, F.; Ge, Y. Q.; Song, Y. F.; Xing, C. Y.; Fan, D. Y.; Zhang, H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 2019, 11, 6235-6242.

217

Guo, J.; Zhang, Y.; Wang, Z. H.; Shu, Y. Q.; He, Z. W.; Zhang, F.; Gao, L. F.; Li, C.; Wang, C.; Song, Y. F. et al. Tellurium@Selenium core-shell hetero-junction: Facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. Appl. Mater. Today 2020, 20, 100657.

218

Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006, 114, 343-347.

219

Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929-1934.

220

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Ang. Chem. , Int. Ed. 2011, 50, 7385-7390.

221

Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.

222

Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206-2214.

223

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/ photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

224

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.

225

Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

226

Deng, S. Q.; Zou, H. Y.; Lan, J.; Huang, C. Z. Aggregation-induced superior peroxidase-like activity of Cu2-xSe nanoparticles for melamine detection. Anal. Methods. 2016, 8, 7516-7521.

227

Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long- circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118-122.

228

Mao, F. X.; Wen, L.; Sun, C. X.; Zhang, S. H.; Wang, G. L.; Zeng, J. F.; Wang, Y.; Ma, J. M.; Gao, M. Y.; Li, Z. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer. ACS Nano 2016, 10, 11145-11155.

229

Xie, H. H.; Li, Z. B.; Sun, Z. B.; Shao, J. D.; Yu, X. F.; Guo, Z. N.; Wang, J. H.; Xiao, Q. L.; Wang, H. Y.; Wang, Q. Q. et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 2016, 12, 4136-4145.

230

Ruleova, P.; Drasar, C.; Lostak, P.; Li, C. P.; Ballikaya, S.; Uher, C. Thermoelectric properties of Bi2O2Se. Mater. Chem. Phys. 2010, 119, 299-302.

231

Wu, J. X.; Liu, Y. J.; Tan, Z. J.; Tan, C. W.; Yin, J. B.; Li, T. R.; Tu, T.; Peng, H. L. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv. Mater. 2017, 29, 1704060.

232

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530-534.

233

Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

234

Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

235

Quhe, R.; Liu, J. C.; Wu, J. X.; Yang, J.; Wang, Y. Y.; Li, Q. H.; Li, T. R.; Guo, Y.; Yang, J. B.; Peng, H. L. et al. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 2019, 11, 532-540.

236

Xie, H. H.; Liu, M. Q.; You, B. H.; Luo, G. H.; Chen, Y.; Liu, B. L.; Jiang, Z. Y.; Chu, P. K.; Shao, J. D.; Yu, X. F. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 2020, 16, 1905208.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2021
Revised: 10 March 2021
Accepted: 05 April 2021
Published: 19 May 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The research was partially supported by the Innovation Team Project of Department of Education of Guangdong Province (No. 2018KCXTD026), and the Postdoctoral Research Foundation of China (No. 2020M672786), and the National Natural Science Fund (Nos. 61875138, 61435010, and 61961136001), and the National Key Research and Development Program of China (No. 2018YFE0181500), and the Sichuan Province's Science Fund for Distinguished Young Scholars (No. 2020JDJQ0022).

Return