Journal Home > Volume 15 , Issue 1

Improving thermal transport between substrate and transistors has become a vital solution to the thermal challenge in nanoelectronics. Recently 2D WTe2 has sparked extensive interest because of heavy atomic mass and low Debye temperature. Here, the thermal transport of supported WTe2 was studied via Raman thermometry with electrical heating. The supported 30 nm WTe2 encased with 70 nm Al2O3 delivered 4.8 W·m-1·K-1 in-plane thermal conductivity along zigzag direction at room temperature, which was almost 1.6 times larger than that along armchair direction (3.0 W·m-1·K-1). Interestingly, the superior and inferior directions for thermal transport are just opposite of those for electrical transport. Hence, a heat manipulation model in WTe2 FET device was proposed. Within the designed configuration, waste heat in WTe2 would be mostly dissipated to metal contacts located along zigzag, relieving the local temperature discrepancy in the channel effectively and preventing degradation or breakdown. Our study provides new insight into thermal transport of anisotropic 2D materials, which might inspire energy-efficient nanodevices in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anisotropic in-plane thermal conductivity for multi-layer WTe2

Show Author's information Yuehua Wei1,§Chuyun Deng2,§Xiaoming Zheng3Yangbo Chen3Xiangzhe Zhang1Wei Luo2Yi Zhang2Gang Peng2Jinxin Liu4Han Huang4Weiwei Cai3,5Qi Ge5Renyan Zhang1( )Xueao Zhang3( )Shiqiao Qin1( )
College of Advanced Interdisciplinary Studies National University of Defense TechnologyChangsha 410073 China
College of Arts and Sciences National University of Defense TechnologyChangsha 410073 China
College of Physical Science and Technology Xiamen UniversityXiamen 361005 China
Hunan Key Laboratory of Super-microstructure and Ultrafast Process School of Physics and Electronics Central South UniversityChangsha 410083 China
Chongqing 2D Materials Institute Liangjiang New AreaChongqing 400714 China

§ Yuehua Wei and Chuyun Deng contributed equally to this work.

Abstract

Improving thermal transport between substrate and transistors has become a vital solution to the thermal challenge in nanoelectronics. Recently 2D WTe2 has sparked extensive interest because of heavy atomic mass and low Debye temperature. Here, the thermal transport of supported WTe2 was studied via Raman thermometry with electrical heating. The supported 30 nm WTe2 encased with 70 nm Al2O3 delivered 4.8 W·m-1·K-1 in-plane thermal conductivity along zigzag direction at room temperature, which was almost 1.6 times larger than that along armchair direction (3.0 W·m-1·K-1). Interestingly, the superior and inferior directions for thermal transport are just opposite of those for electrical transport. Hence, a heat manipulation model in WTe2 FET device was proposed. Within the designed configuration, waste heat in WTe2 would be mostly dissipated to metal contacts located along zigzag, relieving the local temperature discrepancy in the channel effectively and preventing degradation or breakdown. Our study provides new insight into thermal transport of anisotropic 2D materials, which might inspire energy-efficient nanodevices in the future.

Keywords: anisotropy, Raman spectrum, WTe2, in-plane thermal conductivity, Raman thermometry with electrical heating

References(36)

1

Xiao, J. T.; Liu, J. X.; Sun, K. L.; Zhao, Y.; Shao, Z. Y.; Liu, X. L.; Yuan, Y. B.; Li, Y. Z.; Xie, H. P. et al. PbI2-MoS2 heterojunction: Van der waals epitaxial growth and energy band alignment. J. Phys. Chem. Lett. 2019, 10, 4203–4208.

2

Xiao, J. T.; Zhang, L.; Zhou, H.; Shao, Z. Y.; Liu, J. X.; Zhao, Y.; Li, Y. Z.; Liu, X. L.; Xie, H. P.; Gao, Y. L. et al. Type-II interface band alignment in the vdW PbI2–MoSe2 heterostructure. ACS Appl. Mater. Interfaces 2020, 12, 32099–32105.

3

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

4

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

5

Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huan, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.

6

Zheng, X. M.; Wei, Y. H.; Deng, C. Y.; Huang, H.; Yu, Y. Y.; Wang, G.; Peng, G.; Zhu, Z. H.; Zhang, Y.; Jiang, T. et al. Controlled layer-by-layer oxidation of MoTe2 via O3 exposure. ACS Appl. Mater. Interfaces 2018, 10, 30045–30050.

7

Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p–n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469–13476.

8

Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.

9

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

10

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

11

Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

12

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

13

Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929.

14

Ong, Z. Y.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 2014, 118, 25272–25277.

15

Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

16

Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

17

Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

18

Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

19

Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 1979, 34, 1–71.

20

Ma, J. L.; Chen, Y. N.; Han, Z.; Li, W. Strong anisotropic thermal conductivity of monolayer WTe2. 2D Mater. 2016, 3, 045010.

21

Liu, X. L.; Zhang, X.; Lin M. L.; Tan, P. H. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials. Chin. Phys. B, 2017, 26, 067802.

22

Mleczko, M. J.; Xu, R. J.; Okabe, K.; Kuo, H. H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. High current density and low thermal conductivity of atomically thin semimetallic WTe2. Acs Nano 2016, 10, 7507–7514.

23

Wang, Q. S.; Yesilyurt, C.; Liu, F. C.; Siu, Z. B.; Cai, K. M.; Kumar, D.; Liu, Z.; Jalil, M. B. A.; Yang, H. Anomalous photothermoelectric transport due to anisotropic energy dispersion in WTe2. Nano Lett. 2019, 19, 2647–2652.

24

Wei, Y. H.; Zhang, R. Y.; Zhang, Y.; Zheng, X. M.; Cai, W. W.; Ge, Q.; Novoselov, K. S.; Xu, Z. J.; Jiang, T.; Deng, C. Y. et al. Thickness-independent energy dissipation in graphene electronics. ACS Appl. Mater. Interfaces 2020, 12, 17706–17712.

25

Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.

26

Ali, F.; Ahmed, F.; Yang, Z.; Moon, I.; Lee, M.; Hassan, Y.; Lee, C.; Yoo, W. J. Energy dissipation in black phosphorus heterostructured devices. Adv. Mater. Interfaces 2019, 6, 1801528.

27

Ahmed, F.; Kim, Y. D.; Choi, M. S.; Liu, X. C.; Qu, D. S.; Yang, Z.; Hu, J. Y.; Herman, I. P.; Hone, J.; Yoo, W. J. High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 2017, 27, 1604025.

28

Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B.; Pop, E. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

29
Sun, H. Y.; Li, Q. F. Anisotropic phonon transport, thermal expansion and thermomechanics in monolayer Td-WTe2. arXiv. 2016, 1607.03639.
30

Liao, A. D.; Wu, J. Z.; Wang, X. R.; Tahy, K.; Jena, D.; Dai, H. J.; Pop, E. Thermally limited current carrying ability of graphene nanoribbons. Phys. Rev. Lett. 2011, 106, 256801.

31

Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

32

Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.

33

Liu, X. J.; Zhang, G.; Pei, Q. X.; Zhang, Y. W. Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.

34

Ma, J. L.; Li, W.; Luo, X. B. Intrinsic thermal conductivities and size effect of alloys of wurtzite AlN, GaN, and InN from first-principles. J. Appl. Phys. 2016, 119, 125702.

35

Ma, J. L.; Li, W.; Luo, X. B. Intrinsic thermal conductivity and its anisotropy of wurtzite InN. Appl. Phys. Lett. 2014, 105, 082103.

36

Vaziri, S.; Yalon, E.; Rojo, M. M.; Suryavanshi, S. V.; Zhang, H. R.; McClellan, C. J.; Bailey, C. S.; Smithe, K. K. H.; Gabourie, A. J.; Chen, V. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 2019, 5, eaax1325.

File
12274_2021_3492_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 January 2021
Revised: 28 February 2021
Accepted: 05 April 2021
Published: 01 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61801498, 11404399, 11874423, and 51701237), the National Defense Science and Technology Innovation Zone, the Scientific Researches Foundation of National University of Defense Technology (Nos. ZK18-01-03, ZK18-03-36, ZK20-16, and ZZKY-YX-08-06), the China Postdoctoral Science Foundation (CPSF) (No. 2019M663569), and the Youth Talent Lifting Project (No. 17-JCJQ-QT-004).

Return