Journal Home > Volume 15 , Issue 1

As one of the high-capacity anodes in lithium-ion batteries (LIBs), silicon oxide (SiOx) has attracted wide attention due to its high theoretical capacity, low cost, and proper working voltage. However, the huge volume change and the intrinsic poor conductivity of SiOx still hinder the practical applications. How to address the issues is the focus of current research. In this work, firstly, hydrogen passivated Si nanosheets (Si6H6) were prepared from Zintl phase CaSi2, then, two-dimensional Ag nanoparticle modified SiOx/C nanocomposite was prepared via a facile complex redox reaction between Si6H6 and AgNO3-aniline complexing agent. In this design, aniline was served as carbon sources, and Si6H6 could be transformed to SiOx by AgNO3 in mild solution condition. The obtained Ag modified SiOx/C (SiOx/C-Ag) electrode exhibited high specific capacity (550 mAh·g-1 at 0.6 A·g-1), superior rate, and cycling performance when served as anode for LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage

Show Author's information Jie Xie1,2Lin Sun1,2,3( )Yanxiu Liu2Xinguo Xi2Ruoyu Chen1( )Zhong Jin3( )
Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology School of Petrochemical Engineering Changzhou UniversityChangzhou 213164 China
School of Chemistry and Chemical Engineering Yancheng Institute of TechnologyYancheng 224051 China
Key Laboratory of Mesoscopic Chmistry of Ministry of Education (MOE) School of Chemistry and Chemical Engineering Nanjing UniversityNanjing 210023 China

Abstract

As one of the high-capacity anodes in lithium-ion batteries (LIBs), silicon oxide (SiOx) has attracted wide attention due to its high theoretical capacity, low cost, and proper working voltage. However, the huge volume change and the intrinsic poor conductivity of SiOx still hinder the practical applications. How to address the issues is the focus of current research. In this work, firstly, hydrogen passivated Si nanosheets (Si6H6) were prepared from Zintl phase CaSi2, then, two-dimensional Ag nanoparticle modified SiOx/C nanocomposite was prepared via a facile complex redox reaction between Si6H6 and AgNO3-aniline complexing agent. In this design, aniline was served as carbon sources, and Si6H6 could be transformed to SiOx by AgNO3 in mild solution condition. The obtained Ag modified SiOx/C (SiOx/C-Ag) electrode exhibited high specific capacity (550 mAh·g-1 at 0.6 A·g-1), superior rate, and cycling performance when served as anode for LIBs.

Keywords: anode, solution synthesis, redox reaction, SiOx, LIBs, two-dimensional structure

References(34)

1

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798–5800.

2

Ritchie, A. G. Recent developments and future prospects for lithium rechargeable batteries. J. Power Sources 2001, 96, 1–4.

3

Liu, N.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci. Rep. 2013, 3, 1919.

4

Chang, W. S.; Park, C. M.; Kim, J. H.; Kim, Y. U.; Jeong, G.; Sohn, H. J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899.

5

Cui, J. L.; Cui, Y. F.; Li, S. H.; Sun, H. L.; Wen, Z. S.; Sun, J. C. Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 30239– 30247.

6

Liu, H. K.; Guo, Z. P.; Wang, J. Z.; Konstantinov, K. Si-based anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 10055–10057.

7

Ban, C. M.; Kappes, B. B.; Xu, Q.; Engtrakul, C.; Ciobanu, C. V.; Dillon, A. C.; Zhao, Y. F. Lithiation of silica through partial reduction. Appl. Phys. Lett. 2012, 100, 243905.

8

Liang, Y. R.; Cai, L. F.; Chen, L. Y.; Lin, X. D.; Fu, R. W.; Zhang, M. Q.; Wu, D. C. Silica nanonetwork confined in nitrogen-doped ordered mesoporous carbon framework for high-performance lithium-ion battery anodes. Nanoscale 2015, 7, 3971–3975.

9

Cao, X.; Chuan, X. Y.; Massé, R. C.; Huang, D. B.; Li, S.; Cao, G. Z. A three layer design with mesoporous silica encapsulated by a carbon core and shell for high energy lithium ion battery anodes. J. Mater. Chem. A 2015, 3, 22739–22749.

10

Zhu, M. Y.; Shen, Y. B.; Chang, L. M.; Yin, D. M.; Cheng, Y.; Wang, L. M. Enabling high electrochemical activity of a hollow SiO2 anode by decorating it with ultrafine cobalt nanoparticles and a carbon matrix for long-lifespan lithium ion batteries. Nanoscale 2020, 12, 13442–13449.

11

Tu, J. G.; Yuan, Y.; Zhan, P.; Jiao, H. D.; Wang, X. D.; Zhu, H. M.; Jiao, S. Q. Straightforward approach toward SiO2 nanospheres and their superior lithium storage performance. J. Phys. Chem. C 2014, 118, 7357–7362.

12

Yu, Q.; Ge, P. P.; Liu, Z. H.; Xu, M.; Yang, W.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J. Mater. Chem. A 2018, 6, 14903–14909.

13

Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@Shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299–305.

14

Ouyang, P. H.; Jin, C. X.; Xu, G. J.; Yang, X. X.; Kong, K. J.; Liu, B. B.; Dan, J. L.; Chen, J.; Yue, Z. H.; Li, X. M. et al. Lithium ion batteries with enhanced electrochemical performance by using carbon- coated SiOx/Ag composites as anode material. Ceram. Int. 2021, 47, 1086–1094.

15

Mu, G.; Mu, D. B.; Wu, B. R.; Ma, C. W.; Bi, J. Y.; Zhang, L.; Yang, H.; Wu, F. Microsphere-like SiO2/MXene hybrid material enabling high performance anode for lithium ion batteries. Small 2020, 16, 1905430.

16

Huang, K.; Liu, G. P.; Lou, Y. Y.; Dong, Z. Y.; Shen, J.; Jin, W. Q. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem., Int. Ed. 2014, 53, 6929– 6932.

17

Tang, H. J.; Wang, J. Y.; Yin, H. J.; Zhao, H. J.; Wang, D.; Tang, Z. Y. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 2015, 27, 1117–1123.

18

Li, P. H.; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 2019, 12, 2218–2223.

19

Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

20

Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

21

Sun, L.; Su, T. T.; Xu, L.; Liu, M. P.; Du, H. B. Two-dimensional ultra-thin SiOx (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes. Chem. Commun. 2016, 52, 4341–4344.

DOI
22

Lin, H.; Qiu, W. J.; Liu, J. J.; Yu, L. D.; Gao, S. S.; Yao, H. L.; Chen, Y.; Shi, J. L. Silicene: Wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine. Adv. Mater. 2019, 31, 1903013.

23

De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano 2016, 10, 11163–11171.

24

Dahn, J. R.; Way, B. M.; Fuller, E.; Tse, J. S. Structure of siloxene and layered polysilane (Si6H6). Phys. Rev. B 1993, 48, 17872–17877.

25

Kumai, Y.; Kadoura, H.; Sudo, E.; Iwaki, M.; Okamoto, H.; Sugiyama, Y.; Nakano, H. Si–C composite anode of layered polysilane (Si6H6) and sucrose for lithium ion rechargeable batteries. J. Mater. Chem. 2011, 21, 11941–11946.

26

Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Mariappan, V. K.; Kim, S. J. Understanding the thermal treatment effect of two-dimensional siloxene sheets and the origin of superior electrochemical energy storage performances. ACS Appl. Mater. Interfaces 2019, 11, 624–633.

27

Majeed Khan, M. A.; Kumar, S.; Ahamed, M.; Alrokayan, S. A.; AlSalhi, M. S. Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 2011, 6, 434.

28

Nakano, H.; Ishii, M.; Nakamura, H. Preparation and structure of novel siloxene nanosheets. Chem. Commun. 2005, 23, 2945–2947.

29

Xiang, X. M.; Zhao, H. H.; Yang, J.; Zhao, J.; Yan, L.; Song, H. L.; Chou, L. J. Nickel based mesoporous silica-ceria-zirconia composite for carbon dioxide reforming of methane. Appl. Catal. A 2016, 520, 140–150.

30

Li, K.; Cui, S. S.; Hu, J. L.; Zhou, Y. F.; Liu, Y. C. Crosslinked pectin nanofibers with well-dispersed Ag nanoparticles: Preparation and characterization. Carbohydr. Polym. 2018, 199, 68–74.

31

Lesiak, B.; Kövér, L.; Tóth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. C sp2/sp3 hybridisations in carbon nanomaterials-XPS and (X)AES study. Appl. Surf. Sci. 2018, 452, 223–231.

32

Xu, Y. G.; Xu, H.; Li, H. M.; Xia, J. X.; Liu, C. T.; Liu, L. Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J. Alloys Compd. 2011, 509, 3286–3292.

33

Zhang, L.; Deng, J. W.; Liu, L. F.; Si, W. P.; Oswald, S.; Xi, L. X.; Kundu, M.; Ma, G. Z.; Gemming, T.; Baunack, S. et al. Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv. Mater. 2014, 26, 4527–4532.

34

Zhu, G. J.; Zhang, F. Z.; Li, X. M.; Luo, W.; Li, L.; Zhang, H.; Wang, L. J.; Wang, Y. X.; Jiang, W.; Liu, H. K. et al. Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes. Angew. Chem., Int. Ed. 2019, 58, 6669–6673.

File
12274_2021_3491_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2021
Revised: 01 April 2021
Accepted: 01 April 2021
Published: 11 May 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0208200 and 2016YFB0700600), the Fundamental Research Funds for the Central Universities of China (No. 0205-14380219), the National Natural Science Foundation of China (Nos. 22022505, 51772258, 21872069, and 51761135104), the Natural Science Foundation of Jiangsu Province (Nos. BK20181056, BK20180008, and BK20191042), Jiangsu Postdoctoral Science Fundation (No. 2020Z258), Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology (No. SKLPST201901), and Funding for school-level research projects of Yancheng Institute of Technology (No. xjr2019006).

Return