AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Induced structural modifications in ZnS nanowires via physical state of catalyst: Highlights of 15R crystal phase

Sumit Kumar1( )Frédéric Fossard2Gaëlle Amiri1Jean-Michel Chauveau1Vincent Sallet1( )
Groupe d'Etude de la Matière Condensée (GEMAC) Université Paris-Saclay CNRS-Université de Versailles St Quentin en Yvelines 45 avenue des Etats-UnisVersailles 78035 France
Laboratoire d'Étude des Microstructures (LEM) CNRS-ONERA Université Paris-Saclay 29 avenue Division LeclercChatillon 92322 France
Show Author Information

Graphical Abstract

Abstract

Peculiar and unique growth mechanisms involved in semiconductor nanowires (NWs) pave the way to the achievement of new crystallographic phases and remarkable material properties, and hence, studying polytypism in semiconductor NWs arouses a strong interest for the next generation of electronic and photonic applications. In this context, the growth of ZnS nanowires has been investigated, as bulk ZnS compound exhibits numerous unstable polytypes at high temperatures, but their stable occurrence is highly anticipated in a nanowire due to its special quasi-dimensional shape and growth modes. In this work, the idea is to provide a change in the growth mechanism via the physical state of catalyst droplet (liquid or solid) and hence, study the induced structural modifications in ZnS nanowires. The HRTEM images of VLS (via liquid alloyed catalyst) grown ZnS NWs show periodic stacking faults, which is precisely identified as a stacking sequence of cubic or hexagonal individual planes leading to an astonishing 15R crystal polymorph. This crystallographic phase is observed for the first time in nanowires. Contrastingly, NWs grown with VSS (via solid catalyst) show crystal polytypes of zinc blende and wurtzite. We calculate and discuss the role of cohesive energies in the formation of such ZnS polytypes. Further, we present the selection rules for the crystallization of such 15R structure in NWs and discuss the involved VLS and VSS growth mechanisms leading to the formation of different crystal phases.

Electronic Supplementary Material

Download File(s)
12274_2021_3487_MOESM1_ESM.pdf (4.3 MB)

References

1

Jie, J. S.; Zhang, W.; Bello, I.; Lee, C. S.; Lee, S. T. One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications. Nano Today 2010, 5, 313–336.

2

Pauzauskie, P. J.; Yang, P. Nanowire photonics. Mater. Today 2006, 9, 36–45.

3

Güniat, L.; Caroff, P.; Morral, A. F. I. Vapor phase growth of semiconductor nanowires: Key developments and open questions. Chem. Rev. 2019, 119, 8958–8971.

4

Laferrière, P.; Yeung, E.; Giner, L.; Haffouz, S.; Lapointe, J.; Aers, G. C.; Poole, P. J.; Williams, R. L.; Dalacu, D. Multiplexed single- photon source based on multiple quantum dots embedded within a single nanowire. Nano Lett. 2020, 20, 3688–3693.

5

Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

6

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

7

Mardix, S. Polytypism: A controlled thermodynamic phenomenon. Phys. Rev. B 1986, 33, 8677–8684.

8

Engel, G. E.; Needs, R. J. Total energy calculations on zinc sulphide polytypes. J. Phys. Condens. Matter 1990, 2, 367–376.

9

Ortiz, A. L.; Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F. The prolific polytypism of silicon carbide. J. Appl. Crystall. 2013, 46, 242–247.

10

Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 2009, 4, 50–55.

11

Hao, Y. F.; Meng, G. W.; Wang, Z. L.; Ye, C. H.; Zhang, L. D. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor–liquid–solid growth. Nano Lett. 2006, 6, 1650–1655.

12

Johansson, J.; Dick, K. A.; Caroff, P.; Messing, M. E.; Bolinsson, J.; Deppert, K.; Samuelson, L. Diameter dependence of the wurtzite–zinc blende transition in inas nanowires. J. Phys. Chem. C 2010, 114, 3837–3842.

13

Priante, G.; Harmand, J. C.; Patriarche, G.; Glas, F. Random stacking sequences in III-V nanowires are correlated. Phys. Rev. B 2014, 89, 241301.

14

Lopez, F. J.; Hemesath, E. R.; Lauhon, L. J. Ordered stacking fault arrays in silicon nanowires. Nano Lett. 2009, 9, 2774–2779.

15

Biswas, S.; Doherty, J.; Majumdar, D.; Ghoshal, T.; Rahme, K.; Conroy, M.; Singha, A.; Morris, M. A.; Holmes, J. D. Diameter- controlled germanium nanowires with lamellar twinning and polytypes. Chem. Mater. 2015, 27, 3408–3416.

16

Dheeraj, D. L.; Patriarche, G.; Zhou, H.; Hoang, T. B.; Moses, A. F.; Grønsberg, S.; van Helvoort, A. T. J.; Fimland, B. O.; Weman, H. Growth and characterization of wurtzite GaAs nanowires with defect- free zinc blende GaAsSb inserts. Nano Lett. 2008, 8, 4459–4463.

17

Jiang, Y.; Meng, X. M.; Liu, J.; Hong, Z. R.; Lee, C. S.; Lee, S. T. ZnS nanowires with wurtzite polytype modulated structure. Adv. Mater. 2003, 15, 1195–1198.

18

Liu, X. H.; Wang, D. W. Kinetically-induced hexagonality in chemically grown silicon nanowires. Nano Res. 2009, 2, 575–582.

19

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

20

Dubrovskii, V. G.; Cirlin, G. E.; Soshnikov, I. P.; Tonkikh, A. A.; Sibirev, N. V.; Samsonenko, Y. B.; Ustinov, V. M. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment. Phys. Rev. B 2005, 71, 205325.

21

Harmand, J. C.; Glas, F.; Patriarche, G. Growth kinetics of a single InP1–xAsx nanowire. Phys. Rev. B 2010, 81, 235436.

22

Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Li, L.; Wu, L. M.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175–287.

23

Premkumar, S.; Nataraj, D.; Bharathi, G.; Ramya, S.; Thangadurai, T. D. Highly responsive ultraviolet sensor based on ZnS quantum dot solid with enhanced photocurrent. Sci. Rep. 2019, 9, 18704.

24

Wang, Z. W.; Daemen, L. L.; Zhao, Y. S.; Zha, C. S.; Downs, R. T.; Wang, X. D.; Wang, Z. L.; Hemley, R. J. Morphology-tuned wurtzite- type ZnS nanobelts. Nat. Mater. 2005, 4, 922–927.

25

Akizuki, M. Investigation of phase transition of natural ZnS minerals by high resolution electron microscopy. Amer. Mineral. 1981, 66, 1006–1012.

26

Boutaiba, F.; Belabbes, A.; Ferhat, M.; Bechstedt, F. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study. Phys. Rev. B 2014, 89, 245308.

27

Zagorac, D.; Schön, J. C.; Zagorac, J.; Jansen, M. Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties. RSC Adv. 2015, 5, 25929–25935.

28

Takeuchi, S.; Suzuki, K.; Maeda, K.; Iwanaga, H. Stacking-fault energy of II–VI compounds. Philos. Mag. A 1985, 50, 171–178.

29

Guo, Y. G.; Wang, Q.; Kawazoe, Y.; Jena, P. A new silicon phase with direct band gap and novel optoelectronic properties. Sci. Rep. 2015, 5, 14342.

30

Fissel, A.; Kaiser, U.; Schröter, B.; Richter, W.; Bechstedt, F. MBE growth and properties of SiC multi-quantum well structures. Appl. Surf. Sci. 2001, 184, 37–42.

31

Akopian, N.; Patriarche, G.; Liu, L.; Harmand, J. C.; Zwiller, V. Crystal phase quantum dots. Nano Lett. 2010, 10, 1198–1201.

32

Xue, M. F.; Li, M.; Huang, Y. S.; Chen, R. K.; Li, Y. L.; Wang, J. Y.; Xing, Y. J.; Chen, J. J.; Yan, H. G.; Xu, H. Q. et al. Observation and ultrafast dynamics of inter-sub-band transition in InAs twinning superlattice nanowires. Adv. Mater. 2020, 32, 2004120.

33

Persson, A. I.; Larsson, M. W.; Stenström, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681.

34

Sue, Y. S.; Pan, K. Y.; Wei, D. H. Optoelectronic and photocatalytic properties of zinc sulfide nanowires synthesized by vapor-liquid-solid process. Appl. Surf. Sci. 2019, 471, 435–444.

35

Yue, G. H.; Yan, P. X.; Yan, D.; Fan, X. Y.; Wang, M. X.; Qu, D. M.; Liu, J. Z. Hydrothermal synthesis of single-crystal ZnS nanowires. Appl. Phys. A 2006, 84, 409–412.

36

Thombare, S. V.; Marshall, A. F.; McIntyre, P. C. Size effects in vapor-solid-solid Ge nanowire growth with a Ni-based catalyst. J. Appl. Phys. 2012, 112, 054325.

37

Zannier, V.; Grillo, V.; Rubini, S. Diameter-dependent morphology of vapour–solid–solid grown ZnSe nanowires. J. Phys. D Appl. Phys. 2014, 47, 394005.

38

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

39

Liang, Y.; Xu, H. Y.; Hark, S. K. Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 2010, 114, 8343–8347.

40

Geng, B. Y.; Liu, X. W.; Du, Q. B.; Wei, X. W.; Zhang, L. D. Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 2006, 88, 163104.

41

Biswas, S.; Kar, S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: A simple solvothermal approach. Nanotechnology 2008, 19, 045710.

42

Rothman, A.; Forsht, T.; Danieli, Y.; Popovitz-Biro, R.; Rechav, K.; Houben, L.; Joselevich, E. Guided growth of horizontal ZnS nanowires on flat and faceted sapphire surfaces. J. Phys. Chem. C 2018, 122, 12413–12420.

43

Liang, Y.; Liang, H.; Xiao, X. D.; Hark, S. The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem. 2012, 22, 1199–1205.

44

Ramsdell, L. S. Studies on silicon carbide. Amer. Mineral. 1947, 32, 64–82.

45

Gibbon, D. L. Electron diffraction effects in silicon carbide. I. Pure polytypes. II. Whiskers. J. Appl. Crystallogr. 1971, 4, 95–103.

46

Frondel, C.; Palache, C. Three new polymorphs of zinc sulfide. Science 1948, 107, 602.

47

Glas, F. A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 2008, 104, 093520.

48

Zagorac, D.; Zagorac, J.; Schön, J. C.; Stojanović, N.; Matović, B. ZnO/ZnS (hetero)structures: Ab initio investigations of polytypic behavior of mixed ZnO and ZnS compounds. Acta Cryst. Sect. B 2018, 74, 628–642.

49

Zhdanov, G. S. The numerical symbol of close packing of spheres and its application in the theory of close packings. Compt. Rend. Acad. Sci. URSS 1945, 48, 39–42.

50

Johansson, J.; Bolinsson, J.; Ek, M.; Caroff, P.; Dick, K. A. Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 2012, 6, 6142–6149.

51

Harmand, J. C.; Patriarche, G.; Glas, F.; Panciera, F.; Florea, I.; Maurice, J. L.; Travers, L.; Ollivier, Y. Atomic step flow on a nanofacet. Phys. Rev. Lett. 2018, 121, 166101.

52

Kim, Y.; Im, H. S.; Park, K.; Kim, J.; Ahn, J. P.; Yoo, S. J.; Kim, J. G.; Park, J. Bent polytypic ZnSe and CdSe nanowires probed by photoluminescence. Small 2017, 13, 1603695.

53

Goktas, N. I.; Sokolovskii, A.; Dubrovskii, V. G.; LaPierre, R. R. Formation mechanism of twinning superlattices in doped GaAs nanowires. Nano Lett. 2020, 20, 3344–3351.

54

Yu, H. L.; Wang, Q.; Yang, L.; Dai, B.; Zhu, J. Q.; Han, J. C. Ultraviolet–visible light photoluminescence induced by stacking faults in 3C–SiC nanowires. Nanotechnology 2019, 30, 235601.

55

Dubrovskii, V. G.; Sibirev, N. V.; Harmand, J. C.; Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301.

56

Panciera, F.; Baraissov, Z.; Patriarche, G.; Dubrovskii, V. G.; Glas, F.; Travers, L.; Mirsaidov, U.; Harmand, J. C. Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 2020, 20, 1669–1675.

57

Johansson, J.; Zanolli, Z.; Dick, K. A. Polytype attainability in III–V semiconductor nanowires. Cryst. Growth Des. 2016, 16, 371–379.

58

Sun, Q.; Pan, D.; Li, M.; Zhao, J.; Chen, P.; Lu, W.; Zou, J. In situ TEM observation of the vapor–solid–solid growth of < 001 > InAs nanowires. Nanoscale 2020, 12, 11711–11717.

59

Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

60

Rueda-Fonseca, P.; Orrù, M.; Bellet-Amalric, E.; Robin, E.; Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J. Diffusion- driven growth of nanowires by low-temperature molecular beam epitaxy. J. Appl. Phys. 2016, 119, 164303.

61

Simon, H.; Krekeler, T.; Schaan, G.; Mader, W. Metal-seeded growth mechanism of ZnO nanowires. Cryst. Growth Des. 2013, 13, 572–580.

62

Okamoto, H.; Massalski, T. B. The Au-S (gold-sulfur) system. Bull. Alloy Phase Diagrams 1985, 6, 518–519.

63

Ishikawa, K.; Isonaga, T.; Wakita, S.; Suzuki, Y. Structure and electrical properties of Au2S. Solid State Ionics 1995, 79, 60–66.

64

Okamoto, H.; Massalski, T. B. The Au-Zn (gold-zinc) system. Bull. Alloy Phase Diagrams 1989, 10, 59–69.

65

Cui, H.; Lü, Y. Y.; Yang, G. W.; Chen, Y. M.; Wang, C. X. Step-flow kinetics model for the vapor–solid–solid si nanowires growth. Nano Lett. 2015, 15, 3640–3645.

66

Rueda-Fonseca, P.; Bellet-Amalric, E.; Vigliaturo, R.; Den Hertog, M.; Genuist, Y.; André, R.; Robin, E.; Artioli, A.; Stepanov, P.; Ferrand, D. et al. Structure and morphology in diffusion-driven growth of nanowires: The case of ZnTe. Nano Lett. 2014, 14, 1877–1883.

67

Maliakkal, C. B.; Jacobsson, D.; Tornberg, M.; Persson, A. R.; Johansson, J.; Wallenberg, R.; Dick, K. A. In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat. Commun. 2019, 10, 4577.

68

Arbiol, J.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R.; Morral, A. F. I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism. Nanotechnology 2007, 18, 305606.

69

Tuan, H. Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals. Chem. Mater. 2005, 17, 5705–5711.

70

Dubrovskii, V. G.; Cirlin, G. E.; Sibirev, N. V.; Jabeen, F.; Harmand, J. C.; Werner, P. New mode of vapor–liquid–solid nanowire growth. Nano Lett. 2011, 11, 1247–1253.

71

Johansson, J.; Karlsson, L. S.; Dick, K. A.; Bolinsson, J.; Wacaser, B. A.; Deppert, K.; Samuelson, L. Effects of supersaturation on the crystal structure of gold seeded III−V nanowires. Cryst. Growth Des. 2009, 9, 766–773.

Nano Research
Pages 377-385
Cite this article:
Kumar S, Fossard F, Amiri G, et al. Induced structural modifications in ZnS nanowires via physical state of catalyst: Highlights of 15R crystal phase. Nano Research, 2022, 15(1): 377-385. https://doi.org/10.1007/s12274-021-3487-8
Topics:

893

Views

11

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 20 January 2021
Revised: 27 March 2021
Accepted: 30 March 2021
Published: 01 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return