Journal Home > Volume 15 , Issue 1

Metal ions play critical roles in chemical, biological, and environmental processes. Various biomolecules have the ability to coordinate with metal ions and form various materials. Nucleobases, nucleosides, and nucleotides, as the essential components of DNA, have emerged as a useful building block for the construction of functional nanomaterials. In recent years, DNA oligonucleotides have also been used for this purpose. We herein review the strategies for the synthesis of soft nanomaterials through the assembly of nucleotides (or DNA) and metal ions to yield various nanoparticles, fibers, and hydrogels. Such coordination methods are simple to operate and can be carried out under ambient conditions. The luminescent, catalytic, and molecular recognition properties of these coordination materials are described with representative recent examples. Their applications ranging from biosensing, enzyme encapsulation, catalysis, templated shell growth to cancer therapy are highlighted. Finally, challenges of this field and future perspectives are discussed.


menu
Abstract
Full text
Outline
About this article

Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications

Show Author's information Jiaojiao Zhou1,2Heyou Han1( )Juewen Liu2( )
State Key Laboratory of Agricultural MicrobiologyCollege of Food Science and Technology, Huazhong Agricultural UniversityWuhan430070China
Department of ChemistryWaterloo Institute for Nanotechnology, University of WaterlooWaterlooON N2L 3G1Canada

Abstract

Metal ions play critical roles in chemical, biological, and environmental processes. Various biomolecules have the ability to coordinate with metal ions and form various materials. Nucleobases, nucleosides, and nucleotides, as the essential components of DNA, have emerged as a useful building block for the construction of functional nanomaterials. In recent years, DNA oligonucleotides have also been used for this purpose. We herein review the strategies for the synthesis of soft nanomaterials through the assembly of nucleotides (or DNA) and metal ions to yield various nanoparticles, fibers, and hydrogels. Such coordination methods are simple to operate and can be carried out under ambient conditions. The luminescent, catalytic, and molecular recognition properties of these coordination materials are described with representative recent examples. Their applications ranging from biosensing, enzyme encapsulation, catalysis, templated shell growth to cancer therapy are highlighted. Finally, challenges of this field and future perspectives are discussed.

Keywords: self-assembly, nanostructures, metal ions, DNA, nucleotides

References(138)

1

Dann Ⅲ, C. E.; Wakeman, C. A.; Sieling, C. L.; Baker, S. C.; Irnov, I.; Winkler, W. C. Structure and mechanism of a metal-sensing regulatory RNA. Cell 2007, 130, 878-892.

2

Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823-830.

3

Wang, J.; Luo, C.; Shan, C. L.; You, Q. C.; Lu, J. Y.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J. L.; Fan, J. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem. 2015, 7, 968-979.

4

Outten, C. E.; O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001, 292, 2488-2492.

5

Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351-360.

6

Wang, H.; Kim, Y.; Liu, H. P.; Zhu, Z.; Bamrungsap, S.; Tan, W. H. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. J. Am. Chem. Soc. 2009, 131, 8221-8226.

7

Tan, S. S.; Teo, Y. N.; Kool, E. T. Selective sensor for silver ions built from polyfluorophores on a DNA backbone. Org. Lett. 2010, 12, 4820-4823.

8

Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149-175.

9

Lake, R. J.; Yang, Z. L.; Zhang, J. J.; Lu, Y. DNAzymes as activity-based sensors for metal ions: Recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res. 2019, 52, 3275-3286.

10

Sigel, R. K.; Sigel, H. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc. Chem. Res. 2010, 43, 974-984.

11

Zhou, W. H.; Saran, R.; Liu, J. W. Metal sensing by DNA. Chem. Rev. 2017, 117, 8272-8325.

12

Ward, W. L.; Plakos, K.; DeRose, V. J. Nucleic acid catalysis: Metals, nucleobases, and other cofactors. Chem. Rev. 2014, 114, 4318-4342.

13

Lopez, A.; Liu, J. W. Self-assembly of nucleobase, nucleoside and nucleotide coordination polymers: From synthesis to applications. ChemNanoMat 2017, 3, 670-684.

14

He, Y. P.; Lopez, A.; Zhang, Z. J.; Chen, D.; Yang, R. H.; Liu, J. W. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord. Chem. Rev. 2019, 387, 235-248.

15

Zhou, P.; Shi, R. F.; Yao, J. F.; Sheng, C. F.; Li, H. Supramolecular self-assembly of nucleotide-metal coordination complexes: From simple molecules to nanomaterials. Coord. Chem. Rev. 2015, 292, 107-143.

16

Xu, L.; Zhang, Z. J.; Fang, X. Q.; Liu, Y. B.; Liu, B. W.; Liu, J. W. Robust hydrogels from lanthanide nucleotide coordination with evolving nanostructures for a highly stable protein encapsulation. ACS Appl. Mater. Interfaces 2018, 10, 14321-14330.

17

Zhang, Z. J.; Morishita, K.; Lin, W. T. D.; Huang, P. J. J.; Liu, J. W. Nucleotide coordination with 14 lanthanides studied by isothermal titration calorimetry. Chin. Chem. Lett. 2018, 29, 151-156.

18

Navarro, J. A. R.; Lippert, B. Molecular architecture with metal ions, nucleobases and other heterocycles. Coord. Chem. Rev. 1999, 185-186, 653-667.

19

Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T. et al. Mercury-mediated formation of thymine−Hg−thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172-2173.

20

Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N−15N J-coupling across Hg: direct observation of Hg-mediated T−T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007, 129, 244-245.

21

Ono, A.; Cao, S. Q.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825-4827.

22

Torigoe, H.; Miyakawa, Y.; Nagasawa, N.; Kozasa, T.; Ono, A. Thermodynamic analyses of the specific interaction between two C: C mismatch base pairs and silver (I) cations. Nucleic Acids Symp. 2006, 50, 225-226.

23

Bastidas, A. C.; Deal, M. S.; Steichen, J. M.; Guo, Y. R.; Wu, J.; Taylor, S. S. Phosphoryl transfer by protein kinase A is captured in a crystal lattice. J. Am. Chem. Soc. 2013, 135, 4788-4798.

24

Liu, J.; Morikawa, M. A.; Kimizuka, N. Conversion of molecular information by luminescent nanointerface self-assembled from amphiphilic Tb(Ⅲ) complexes. J. Am. Chem. Soc. 2011, 133, 17370-17374.

25

Jastrząb, R.; Nowak, M.; Skrobańska, M.; Tolińska, A.; Zabiszak, M.; Gabryel, M.; Marciniak, Ł.; Kaczmarek, M. T. DNA as a target for lanthanide(Ⅲ) complexes influence. Coord. Chem. Rev. 2019, 382, 145-159.

26

Pu, F.; Ren, J. S.; Qu, X. G. Nucleobases, nucleosides, and nucleotides: Versatile biomolecules for generating functional nanomaterials. Chem. Soc. Rev. 2018, 47, 1285-1306.

27

Liu, Y. L.; Tang, Z. Y. Nanoscale biocoordination polymers: Novel materials from an old topic. Chem. -Eur. J. 2012, 18, 1030-1037.

28

Freisinger, E.; Sigel, R. K. O. From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coord. Chem. Rev. 2007, 251, 1834-1851.

29

Peters, G. M.; Davis, J. T. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chem. Soc. Rev. 2016, 45, 3188-3206.

30

Berti, L.; Burley, G. A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 2008, 3, 81-87.

31

de Meester, P.; Goodgame, D. M. L.; Jones, T. J.; Skapski, A. C. X-ray evidence for metal-N-7 bonding in a hydrated manganese derivative of guanosine 5ʹ-monophosphate. Biochem. J. 1974, 139, 791-792.

32

Clark, G. R.; Orbell, J. D. Transition-metal-nucleotide complexes. X-Ray crystal and molecular structure of the complex between nickel(Ⅱ) and inosine 5ʹ-monophosphate[Ni(imp)(H2O)5, 2H2O]. J. Chem. Soc., Chem. Commun. 1974, 139-140.

33

Eichhorn, G. L.; Butzow, J. J.; Shin, Y. A. Some effects of metal ions on DNA structure and genetic information transfer. J. Biosciences 1985, 8, 527-535.

34

Theophanides, T.; Tajmir-Riahi, H. A. Flexibility of DNA and RNA upon binding to different metal cations. An investigation of the B to A to Z conformational transition by Fourier transform infrared spectroscopy. J. Biomol. Struct. Dyn. 1985, 2, 995-1004.

35

Andrushchenko, V. V.; van de Sande, J. H.; Wieser, H.; Kornilova, S. V.; Blagoi, Y. P. Complexes of (dG-dC)20 with Mn2+ ions: A study by vibrational circular dichroism and infrared absorption spectroscopy. J. Biomol. Struct. Dyn. 1999, 17, 545-560.

36

Duguid, J.; Bloomfield, V. A.; Benevides, J.; Thomas, G. J. Jr. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys. J. 1993, 65, 1916-1928.

37

Duguid, J. G.; Bloomfield, V. A.; Benevides, J. M.; Thomas, G. J. Jr. Raman spectroscopy of DNA-metal complexes. Ⅱ. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Biophys. J. 1995, 69, 2623-2641.

38

Cooney, M.; Czernuszewicz, G.; Postel, E. H.; Flint, S. J.; Hogan, M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 1988, 241, 456-459.

39

Bloomfield, V. A. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers 1991, 31, 1471-1481.

40

Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 1997, 44, 269-282.

DOI
41

Andrushchenko, V.; Tsankov, D.; Wieser, H. Vibrational circular dichroism spectroscopy and the effects of metal ions on DNA structure. J. Mol. Struct. 2003, 661-662, 541-560.

42

Liu, J.; Li, H. W.; Wang, W. X.; Wu, Y. Q. Thermally prepared ultrabright adenosine monophosphate capped gold nanoclusters and the intrinsic mechanism. J. Mater. Chem. B 2017, 5, 3550-3556.

43

Zhang, L. P.; Wang, W. X.; Li, A. S.; Liu, J.; Li, H. W.; Wu, Y. Q. Influence of pressure on the structure and luminescence properties of AMP-protected gold nanoparticles as revealed by fluorescence spectra and 2D correlation analysis. J. Mol. Struct. 2020, 1214, 128173.

44

You, Q.; Chen, Y. Ultrabright, highly heat-stable gold nanoclusters through functional ligands and hydrothermally-induced luminescence enhancement. J. Mater. Chem. C 2018, 6, 9703-9712.

45

Wang, Y.; Chen, T. X.; Zhuang, Q. F.; Ni, Y. N. One-pot aqueous synthesis of nucleoside-templated fluorescent copper nanoclusters and their application for discrimination of nucleosides. ACS Appl. Mater. Interfaces 2017, 9, 32135-32141.

46

Gao, Y. S.; Wang, G. Q.; Gu, H. Z.; Zhang, J. L.; Li, W.; Fu, Y. Cooperatively controlling the enzyme mimicking Pt nanomaterials with nucleotides and solvents. Colloid Surf. A: Physicochem. Eng. Asp. 2021, 613, 126070.

47

Lopez, A.; Liu, J. W. Light-activated metal-coordinated supramolecular complexes with charge-directed self-assembly. J. Phys. Chem. C 2013, 117, 3653-3661.

48

Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634-641.

49

Pu, F.; Huang, Y. Y.; Yang, Z. G.; Qiu, H.; Ren, J. S. Nucleotide- based assemblies for green synthesis of silver nanoparticles with controlled localized surface plasmon resonances and their applications. ACS Appl. Mater. Interfaces 2018, 10, 9929-9937.

50

Liu, J.; Yuan, X. X.; Li, H. W.; Wu, Y. Q. Hydrothermal synthesis of novel photosensitive gold and silver bimetallic nanoclusters protected by adenosine monophosphate (AMP). J. Mater. Chem. C 2017, 5, 9979-9985.

51

Yu, X.; Liu, J.; Li, H. W.; Wu, Y. Q. A two-stage assembly with PEI induced emission enhancement of Au-AgNCs@AMP and the intrinsic mechanism. Nanoscale 2018, 10, 14563-14569.

52

Tang, Q.; Plank, T. N.; Zhu, T.; Yu, H. Z.; Ge, Z. L.; Li, Q.; Li, L.; Davis, J. T.; Pei, H. Self-assembly of metallo-nucleoside hydrogels for injectable materials that promote wound closure. ACS Appl. Mater. Interfaces 2019, 11, 19743-19750.

53

Sharma, B.; Mandani, S.; Thakur, N.; Sarma, T. K. Cd(Ⅱ)- nucleobase supramolecular metallo-hydrogels for in situ growth of color tunable CdS quantum dots. Soft Matter 2018, 14, 5715-5720.

54

Sharma, B.; Mahata, A.; Mandani, S.; Thakur, N.; Pathak, B.; Sarma, T. K. Zn(Ⅱ)-nucleobase metal-organic nanofibers and nanoflowers: Synthesis and photocatalytic application. New J. Chem. 2018, 42, 17983-17990.

55

Hu, Y. Y.; Shen, P.; Zeng, N.; Wang, L. L.; Yan, D.; Cui, L. L.; Yang, K.; Zhai, C. P. Hybrid hydrogel electrolyte based on metal-organic supermolecular self-assembly and polymer chemical cross-linking for rechargeable aqueous Zn-MnO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 42285-42293.

56

Bairi, P.; Chakraborty, P.; Mondal, S.; Roy, B.; Nandi, A. K. A thixotropic supramolecular hydrogel of adenine and riboflavin-5ʹ- phosphate sodium salt showing enhanced fluorescence properties. Soft Matter 2014, 10, 5114-5120.

57

Sukul, P. K.; Malik, S. Supramolecular hydrogels of adenine: Morphological, structural and rheological investigations. Soft Matter 2011, 7, 4234-4241.

58

Iwaura, R.; Yoshida, K.; Masuda, M.; Yase, K.; Shimizu, T. Spontaneous fiber formation and hydrogelation of nucleotide bolaamphiphiles. Chem. Mat. 2002, 14, 3047-3053.

59

Chen, J. Q.; Liu, X. W.; Suo, Z. G.; Gao, C. Q.; Xing, F. F.; Feng, L. Y.; Zhao, C. Q.; Hu, L. Z.; Ren, J. S.; Qu, X. G. Right-/left-handed helical G-quartet nanostructures with full-color and energy transfer circularly polarized luminescence. Chem. Commun. 2020, 56, 7706-7709.

60

Nie, F. R.; Ga, L.; Ai, J. One-pot synthesis of nucleoside-templated fluorescent silver nanoparticles and gold nanoparticles. ACS Omega 2019, 4, 7643-7649.

61

Pu, F.; Qu, S. R.; Qiu, H.; Zhang, L. Regulation of light-harvesting antenna based on silver ion-enhanced emission of dye-doped coordination polymer nanoparticles. J. Colloid Interface Sci. 2020, 578, 254-261.

62

Thakur, N.; Sharma, B.; Bishnoi, S.; Mishra, S. K.; Nayak, D.; Kumar, A.; Sarma, T. K. Multifunctional inosine monophosphate coordinated metal-organic hydrogel: Multistimuli responsiveness, self-healing properties, and separation of water from organic solvents. ACS Sustain. Chem. Eng. 2018, 6, 8659-8671.

63

Thakur, N.; Sharma, B.; Bishnoi, S.; Jain, S.; Nayak, D.; Sarma, T. K. Biocompatible Fe3+ and Ca2+ dual cross-linked G-quadruplex hydrogels as effective drug delivery system for pH-responsive sustained zero-order release of doxorubicin. ACS Appl. Bio Mater. 2019, 2, 3300-3311.

64

Suo, Z. G.; Hou, X. L.; Chen, J. Q.; Liu, X. W.; Liu, Y.; Xing, F. F.; Chen, Y. Y.; Feng, L. Y. Highly chiroptical detection with gold-silver bimetallic nanoclusters circularly polarized luminescence based on G-quartet nanofiber self-assembly. J. Phys. Chem. C 2020, 124, 21094-21102.

65

Snyder, J. A.; Charnay, A. P.; Kohl, F. R.; Zhang, Y. Y.; Kohler, B. DNA-like photophysics in self-assembled silver(I)-nucleobase nanofibers. J. Phys. Chem. B 2019, 123, 5985-5994.

66

Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination- driven self-assembly. Angew. Chem., Int. Ed., 2019, 58, 1350-1354.

67

Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed., 2019, 131, 8896-8900.

68

Jia, Y. J.; Shen, X. T.; Sun, F. F.; Na, N.; Ouyang, J. Metal-DNA coordination based bioinspired hybrid nanospheres for in situ amplification and sensing of microRNA. J. Mater. Chem. B 2020, 8, 11074-11081.

69

Liu, X. G.; Zhang, F.; Jing, X. X.; Pan, M. C.; Liu, P.; Li, W.; Zhu, B. W.; Li, J.; Chen, H.; Wang, L. H. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 2018, 559, 593-598.

70

Liu, X. G.; Jing, X X.; Liu, P.; Pan, M. C.; Liu, Z.; Dai, X. P.; Lin, J. P.; Li, Q.; Wang, F.; Yang, S. C. et al. DNA framework-encoded mineralization of calcium phosphate. Chem 2020, 6, 472-485.

71

Yu, X. S.; Hu, L. Z.; He, H.; Zhang, F.; Wang, M.; Wei, W. L.; Xia, Z. N. Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Anal. Chim. Acta 2019, 1057, 114-122.

72

Khalifehzadeh, R.; Arami, H. The CpG molecular structure controls the mineralization of calcium phosphate nanoparticles and their immunostimulation efficacy as vaccine adjuvants. Nanoscale 2020, 12, 9603-9615.

73

Li, Z. H.; Sun, G. T.; Snow, C. D.; Xu, Y. N.; Wang, Y.; Xiu, D.; Zhang, Y.; Zhu, Z. J.; Belfiore, L. A.; Tang, J. G. Near infrared emitting and biocompatible Yb3+-DNA complexes with dual responses to Cu2+ and Fe3+. Opt. Mater. 2020, 108, 110157.

74

Wang, S. Z.; Chen, Y. J.; Wang, S. Y.; Li, P.; Mirkin, C. A.; Farha, O. K. DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 2019, 141, 2215-2219.

75

Wang, S. Z.; McGuirk, C. M.; Ross, M. B.; Wang, S. Y.; Chen, P. C.; Xing, H.; Liu, Y.; Mirkin, C. A. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139, 9827-9830.

76

Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S. et al. Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784-15791.

77

Yu, K. H.; Wei, T. X.; Li, Z. J.; Li, J. Y.; Wang, Z. Y.; Dai, Z. H. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF-DNA interaction. J. Am. Chem. Soc. 2020, 142, 21267-21271.

78

Qiu, W. W.; Gao, F.; Yano, N.; Kataoka, Y.; Handa, M.; Yang, W. Q.; Tanaka, H.; Wang, Q. X. Specific coordination between Zr-MOF and phosphate-terminated DNA coupled with strand displacement for the construction of reusable and ultrasensitive aptasensor. Anal. Chem. 2020, 92, 11332-11340.

79

Zhang, P.; Ouyang, Y.; Willner, I. Multiplexed and amplified chemiluminescence resonance energy transfer (CRET) detection of genes and microRNAs using dye-loaded hemin/G-quadruplex- modified UiO-66 metal-organic framework nanoparticles. Chem. Sci. 2021, doi: 10.1039/d0sc06744j.

80

Meng, H. M.; Shi, X. X.; Chen, J.; Gao, Y. H.; Qu, L. B.; Zhang, K.; Zhang, X. B.; Li, Z. H. DNA amplifier-functionalized metal-organic frameworks for multiplexed detection and imaging of intracellular mRNA. ACS Sens. 2020, 5, 103-109.

81

Meng, H. M.; Hu, X. X.; Kong, G. Z.; Yang, C.; Fu, T.; Li, Z. H.; Zhang, X. B. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Theranostics 2018, 8, 4332-4344.

82

Liu, Y.; Hou, W. J.; Xia, L.; Cui, C.; Wan, S.; Jiang, Y.; Yang, Y.; Wu, Q.; Qiu, L. P.; Tan, W. H. ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem. Sci. 2018, 9, 7505-7509.

83

Xu, L.; Zhang, P. P.; Liu, Y.; Fang, X. Q.; Zhang, Z. J.; Liu, Y. B.; Peng, L. L.; Liu, J. W. Continuously tunable nucleotide/lanthanide coordination nanoparticles for DNA adsorption and sensing. ACS Omega 2018, 3, 9043-9051.

84

Chen, C. X.; Yuan, Q.; Ni, P. J.; Jiang, Y. Y.; Zhao, Z. L.; Lu, Y. Z. Fluorescence assay for alkaline phosphatase based on ATP hydrolysis- triggered dissociation of cerium coordination polymer nanoparticles. Analyst 2018, 143, 3821-3828.

85

Zhang, C. X.; Tanner, J. A.; Li, H. W.; Wu, Y. Q. A novel fluorescence probe of Plasmodium vivax lactate dehydrogenase based on adenosine monophosphate protected bimetallic nanoclusters. Talanta 2020, 213, 120850.

86

Wu, S. X.; Tan, H. L.; Wang, C. H.; Wang, J. H.; Sheng, S. R. A colorimetric immunoassay based on coordination polymer composite for the detection of carcinoembryonic antigen. ACS Appl. Mater. Interfaces 2019, 11, 43031-43038.

87

Ungor, D.; Csapó, E.; Kismárton, B.; Juhász, A.; Dékány, I. Nucleotide-directed syntheses of gold nanohybrid systems with structure-dependent optical features: Selective fluorescence sensing of Fe3+ ions. Colloids Surf. B: Biointerfaces 2017, 155, 135-141.

88

Zhan, L.; Yang, T.; Zhen, S. J.; Huang, C. Z. Cytosine triphosphate- capped silver nanoparticles as a platform for visual and colorimetric determination of mercury(Ⅱ) and chromium(Ⅲ). Microchim. Acta 2017, 184, 3171-3178.

89

Zhang, C. X.; Gao, Y. C.; Wang, C.; Yu, X.; Li, H. W.; Wu, Y. Q. Aggregation-induced emission enhancement of adenosine monophosphate-capped bimetallic nanoclusters by aluminum(Ⅲ) ions, and its application to the fluorometric determination of cysteine. Microchim. Acta 2019, 187, 41.

90

Zhang, Y. Y.; Yang, M.; Shao, Z. Y.; Xu, H. D.; Chen, Y.; Yang, Y. L.; Xu, W. F.; Liao, X. L. A paper-based fluorescent test for determination and visualization of cysteine and glutathione by using gold-silver nanoclusters. Microchem. J. 2020, 158, 105327.

91

Weng, Y. H.; Zhu, Q. Y.; Huang, Z. Z.; Tan, H. L. Time-resolved fluorescence detection of superoxide anions based on an enzyme- integrated lanthanide coordination polymer composite. ACS Appl. Mater. Interfaces 2020, 12, 30882-30889.

92

Liang, H.; Liu, B. W.; Yuan, Q. P.; Liu, J. W. Magnetic iron oxide nanoparticle seeded growth of nucleotide coordinated polymers. ACS Appl. Mater. Interfaces 2016, 8, 15615-15622.

93

Memon, A. H.; Ding, R. S.; Yuan, Q. P.; Liang, H.; Wei, Y. Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by co-immobilization process. Biochem. Eng. J. 2018, 136, 102-108.

94

Liang, H.; Sun, S. S.; Zhou, Y.; Liu, Y. H. In-situ self-assembly of zinc/adenine hybrid nanomaterials for enzyme immobilization. Catalysts 2017, 7, 327.

95

Gao, J.; Wang, C. H.; Tan, H. L. Lanthanide/nucleotide coordination polymers: An excellent host platform for encapsulating enzymes and fluorescent nanoparticles to enhance ratiometric sensing. J. Mater. Chem. B 2017, 5, 7692-7700.

96

Liang, H.; Jiang, S. H.; Yuan, Q. P.; Li, G. F.; Wang, F.; Zhang, Z. J.; Liu, J. W. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: Improved stability and an enzyme cascade for glucose detection. Nanoscale 2016, 8, 6071-6078.

97

Zhao, C. X.; Zhang, X. P.; Shu, Y.; Wang, J. H. Europium- pyridinedicarboxylate-adenine light-up fluorescence nanoprobes for selective detection of phosphate in biological fluids. ACS Appl. Mater. Interfaces 2020, 12, 22593-22600.

98

Gao, R. R.; Wang, J. H.; Wang, H.; Dong, W.; Zhu, J. W. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid. Microchim. Acta 2021, 188, 18.

99

Ma, S. H.; Hu, Y. F.; Zhang, Q. Q.; Guo, Z. Y.; Wang, S.; Shen, Q. P.; Liu, C. B.; Liu, Z. H. Adenine/Au complex-dependent versatile electrochemical platform for ultrasensitive DNA-related enzyme activity assay. Sens. Actuator B: Chem. 2018, 273, 760-770.

100

Liu, Y.; Peng, L. L.; Huang, W. X.; Zhou, H. Z.; Xu, L. Luminescent nucleotide/Tb3+ coordination polymer for Fe(Ⅱ) detection in human serum. Anal. Methods 2020, 12, 1122-1130.

101

Liu, L.; Jiang, H.; Wang, X. M. Bivalent metal ions tethered fluorescent gold nanoparticles as a reusable peroxidase mimic nanozyme. J. Anal. Test. 2019, 3, 269-276.

102

Chen, L. L.; Xu, H.; Wang, L.; Li, Y.; Tian, X. K. Portable ratiometric probe based on the use of europium(Ⅲ) coordination polymers doped with carbon dots for visual fluorometric determination of oxytetracycline. Microchim. Acta 2020, 187, 125.

103

Zhang, G. Q.; Quin, M. B.; Schmidt-Dannert, C. Self-assembling protein scaffold system for easy in vitro coimmobilization of biocatalytic cascade enzymes. ACS Catal. 2018, 8, 5611-5620.

104

Garcia, J.; Zhang, Y.; Taylor, H.; Cespedes, O.; Webb, M. E.; Zhou, D. J. Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale 2011, 3, 3721-3730.

105

Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord. Chem. Rev. 2016, 322, 30-40.

106

He, J.; Sun, S. S.; Lu, M. Z.; Yuan, Q. P.; Liu, Y. H.; Liang, H. Metal-nucleobase hybrid nanoparticles for enhancing the activity and stability of metal-activated enzymes. Chem. Commun. 2019, 55, 6293-6296.

107

Jiang, Y. C.; Liu, S. X.; Yuan, Q. P.; Liang, H. Zr-based acid-stable nucleotide coordination polymers: An excellent platform for acidophilic enzymes immobilization. J. Inorg. Biochem. 2021, 216, 111338.

108

Wu, X. L.; Liu, S. L.; Xiong, J.; Chen, B.; Zong, M. H.; Yang, J. G.; Lou, W. Y. In-situ construction of enzyme-copper nucleotide composite for efficient chemo-enzymatic cascade reaction. Appl. Catal. A: Gen. 2020, 608, 117899.

109

Li, C. F.; Jiang, S. H.; Zhao, X. Y.; Liang, H. Co-immobilization of enzymes and magnetic nanoparticles by metal-nucleotide hydrogelnanofibers for improving stability and recycling. Molecules 2017, 22, 179.

110

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683-3704.

111

Li, Y. Q.; Liu, J. W. Nanozyme's catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336-350.

112

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004-1076.

113

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.

114

Tao, X. Q.; Wang, X.; Liu, B. W.; Liu, J. W. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020, 168, 112537.

115

Lopez, A.; Liu, J. W. Coordination nanoparticles formed by fluorescent 2-aminopurine and Au3+: Stability and nanozyme activities. J. Anal. Test. 2019, 3, 219-227.

116

Zhang, C. X.; Gao, Y. C.; Li, H. W.; Wu, Y. Q. Gold-platinum bimetallic nanoclusters for oxidase-like catalysis. ACS Appl. Nano Mater. 2020, 3, 9318-9328.

117

Peng, D.; Liang, R. P.; Qiu, J. D.; Liu, J. W. Robust colorimetric detection of Cu2+ by excessed nucleotide coordinated nanozymes. J. Anal. Test. 2019, 3, 260-268.

118

Liang, H.; Lin, F. F.; Zhang, Z. J.; Liu, B. W.; Jiang, S. H.; Yuan, Q. P.; Liu, J. W. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352-1360.

119

Jiao, M. Z.; Li, Z. J.; Li, X. L.; Zhang, Z. J.; Yuan, Q. P.; Vriesekoop, F.; Liang, H.; Liu, J. W. Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase. Chem. Eng. J. 2020, 388, 124249.

120

Wang, G. Q.; Feng, L. S.; Li, W.; Zhang, J. L.; Fu, Y. In-situ generation of nanozymes by natural nucleotides: a biocatalytic label for quantitative determination of hydrogen peroxide and glucose. Microchim. Acta 2019, 186, 514.

121

Zou, T.; Han, Y.; Li, X. X.; Li, W.; Zhang, J. L.; Fu, Y. Unexpected catalytic activity of Pd(Ⅱ)-coordinated nucleotides in hydrogenation reduction. Colloid Surf. A: Physicochem. Eng. Asp. 2019, 560, 344-351.

122

Huang, Z. C.; Liu, B. W.; Liu, J. W. A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chem. Commun. 2020, 56, 4208-4211.

123

Liu, Y. B.; Liu, J. W. Growing a nucleotide/lanthanide coordination polymer shell on liposomes. Langmuir 2019, 35, 11217-11224.

124

Yang, Y. C.; Wang, Y. T.; Tseng, W. L. Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: Application to urinary protein sensing. ACS Appl. Mater. Interfaces 2017, 9, 10069-10077.

125

You, J. G.; Wang, Y. T.; Tseng, W. L. Adenosine-related compounds as an enhancer for peroxidase-mimicking activity of nanomaterials: Application to sensing of heparin level in human plasma and total sulfate glycosaminoglycan content in synthetic cerebrospinal fluid. ACS Appl. Mater. Interfaces 2018, 10, 37846-37854.

126

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979-3986.

127

Yue, Q.; Li, J. L.; Luo, W.; Zhang, Y.; Elzatahry, A. A.; Wang, X. Q.; Wang, C.; Li, W.; Cheng, X. W.; Alghamdi, A. et al. An interface coassembly in biliquid phase: Toward core-shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 2015, 137, 13282-13289.

128

Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2008, 130, 28-29.

129

Xu, Z. C.; Hou, Y. L.; Sun, S. H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698-8699.

130

Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 2015, 347, 1260901.

131

Song, Z. L.; Zhao, X. H.; Liu, W. N.; Ding, D.; Bian, X.; Liang, H.; Zhang, X. B.; Chen, Z.; Tan, W. H. Magnetic graphitic nanocapsules for programmed DNA fishing and detection. Small 2013, 9, 951-957.

132

Zhang, S. Q.; Lin, F. F.; Yuan, Q. P.; Liu, J. W.; Li, Y.; Liang, H. Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. J. Environ. Sci. 2020, 88, 103-111.

133

Zhang, X. L.; Deng, J. J.; Xue, Y. M.; Shi, G. Y.; Zhou, T. S. Stimulus response of Au-NPs@GMP-Tb core-shell nanoparticles: Toward colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in algal blooms of a freshwater lake. Environ. Sci. Technol. 2016, 50, 847-855.

134

Nishiyabu, R.; Aimé, C.; Gondo, R.; Kaneko, K.; Kimizuka, N. Selective inclusion of anionic quantum dots in coordination network shells of nucleotides and lanthanide ions. Chem. Commun. 2010, 46, 4333-4335.

135

Yang, Y.; Zhu, W. J.; Feng, L. Z.; Chao, Y.; Yi, X.; Dong, Z. L.; Yang, K.; Tan, W. H.; Liu, Z.; Chen, M. W. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 2018, 18, 6867-6875.

136

Jiang, K.; Chen, Y. S.; Zhao, D.; Cheng, J.; Mo, F. L.; Ji, B.; Gao, C.; Zhang, C.; Song, J. A facile and efficient approach for hypertrophic scar therapy via DNA-based transdermal drug delivery. Nanoscale 2020, 12, 18682-18691.

137

Bhattacharyya, T.; Chaudhuri, R.; Das, K. S.; Mondal, R.; Mandal, S.; Dash, J. Cytidine-derived hydrogels with tunable antibacterial activities. ACS Appl. Bio Mater. 2019, 2, 3171-3177.

138

Zhang, T.; Nong, J.; Alzahrani, N.; Wang, Z. C.; Oh, S. W.; Meier, T.; Yang, D. G.; Ke, Y. G.; Zhong, Y. H.; Fu, J. L. Self-assembly of DNA-minocycline complexes by metal ions with controlled drug release. ACS Appl. Mater. Interfaces 2019, 11, 29512-29521.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2021
Revised: 13 March 2021
Accepted: 15 March 2021
Published: 19 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We gratefully appreciate the support from Natural Sciences and Engineering Research Council of Canada (NSERC), and National Natural Science Foundation of China (No. 21778020). Zhou J. was supported by the HZAU overseas Academic Fund to visit the University of Waterloo.

Return