Journal Home > Volume 15 , Issue 1

Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm–2. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries

Show Author's information Xiaoyu Feng1,2,§Hong-Hui Wu3,§Biao Gao2Michał Świętosławski4Xin He5( )Qiaobao Zhang1( )
Department of Materials Science and Engineering College of Materials Xiamen UniversityXiamen 361005 China
The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology Wuhan University of Science and TechnologyWuhan 430081 China
School of Materials Science and Engineering University of Science and Technology BeijingBeijing 100083 China
Faculty of Chemistry Jagiellonian University ul. Gronostajowa 2Krakow 30-387 Poland
School of Chemical Engineering Sichuan UniversityChengdu 610065 China

§ Xiaoyu Feng and Hong-Hui Wu contributed equally to this work.

Abstract

Lithium (Li) metal with high theoretical capacity and low electrochemical potential is the most ideal anode for next-generation high-energy batteries. However, the practical implementation of Li anode has been hindered by dendritic growth and volume expansion during cycling, which results in low Coulombic efficiency (CE), short lifespan, and safety hazards. Here, we report a highly stable and dendrite-free Li metal anode by utilizing N-doped hollow porous bowl-like hard carbon/reduced graphene nanosheets (CB@rGO) hybrids as three-dimensional (3D) conductive and lithiophilic scaffold host. The lithiophilic carbon bowl (CB) mainly works as excellent guides during the Li plating process, whereas the rGO layer with high conductivity and mechanical stability maintains the integrity of the composite by confining the volume change in long-range order during cycling. Moreover, the local current density can be reduced due to the 3D conductive framework. Therefore, CB@rGO presents a low lithium metal nucleation overpotential of 18 mV, high CE of 98%, and stable cycling without obvious voltage fluctuation for over 600 cycles at a current density of 1 mA·cm–2. Our study not only provides a good CB@rGO host and pre-Lithiated CB@rGO composite anode electrode, but also brings a new strategy of designing 3D electrodes for those active materials suffering from severe volume expansion.

Keywords: dendrite inhibition, Li metal host, lithium metal battery, bowl-like carbon/reduced graphene nanosheets hybrids

References(51)

1

Liang, Y.; Zhao, C. Z.; Yuan, H; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu D.; Liu, Y; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat. 2019, 1, 6–32.

2

Wang, A. X.; Zhang, X. Y.; Yang, Y. W.; Huang, J. X.; Liu, X. J.; Luo, J. Y. Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 2018, 4, 2192–2200.

3

Wu, M.; Li, Y.; Liu, X.; Yang, S.; Ma, J.; Dou, S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat. 2020, 2, 5–11.

4

Pu, K. C.; Zhang, X.; Qu, X. L.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020, 39, 616–635.

5

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

6

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

7

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

8

Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non- aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

9

Zhamu, A.; Chen, G. R.; Liu, C. G.; Neff, D.; Fang, Q.; Yu, Z. N.; Xiong, W.; Wang, Y. B.; Wang, X. Q.; Jang, B. Z. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 2012, 5, 5701–5707.

10

Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

11

Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

12

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

13

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

14

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

15

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

16

Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

17

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

18

Wang, D. D.; Liu, H. D.; Li, M. Q.; Xia, D. W.; Holoubek, J.; Deng, Z.; Yu, M. Y.; Tian, J. H.; Shan, Z. Q.; Ong, S. P. et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy 2020, 75, 104889.

19

Liu, H. D.; Holoubek, J.; Zhou, H. Y.; Chen, A.; Chang, N.; Wu, Z. H.; Yu, S. C.; Yan, Q. Z.; Xing, X.; Li, Y. J. et al. Ultrahigh coulombic efficiency electrolyte enables Li|| span batteries with superior cycling performance. Mater. Today 2020, 42, 17–28.

20

Liu, H. D.; Zhou, H. Y.; Lee, B. S.; Xing, X.; Gonzalez, M.; Liu, P. Suppressing lithium dendrite growth with a single-component coating. ACS Appl. Mater. Interfaces 2017, 9, 30635–30642.

21

Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer- inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Energy 2019, 18, 384–389.

22

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

23

Zhou, H. Y.; Yu, S. C.; Liu, H. D.; Liu, P. Protective coatings for lithium metal anodes: Recent progress and future perspectives. J. Power Sources 2020, 450, 227632.

24

Liu, H. D.; Yue, X. J.; Xing, X.; Yan, Q. Z.; Huang, J.; Petrova, V.; Zhou, H. Y.; Liu, P. A scalable 3D lithium metal anode. Energy Storage Mater. 2019, 16, 505–511.

25

Li, H. P.; Ji, X. Y.; Liang, J. J. Dual-functional ion redistributor for dendrite-free lithium metal anodes. Rare Met. 2020, 39, 861–862.

26

Shi, H. D.; Li, Y. G.; Lu, P. F.; Wu, Z. S. Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes. Acta Phys. –Chim. Sin. 2021, 37, 2008033.

27

Huang, X.; Feng, X. Y.; Zhang, B.; Zhang, L.; Zhang, S. C.; Gao, B.; Chu, P. K.; Huo, K. F. Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 2019, 11, 31824–31831.

28

Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N. et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815–4820.

29

Sun, Y. M.; Zheng, G. Y.; Seh, Z. W.; Liu, N.; Wang, S.; Sun, J.; Lee, H. R.; Cui, Y. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 2016, 1, 287–297.

30

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

31

Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322.

32

Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

33

Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

34

Zhang, R.; Shen, X.; Cheng, X. B.; Zhang, Q. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation? Energy Storage Mater. 2019, 23, 556–565.

35

Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

36

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

37

Yun, Q. B.; He, Y. B; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

38

Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431– 4437.

39

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169.

40

Zhang, H.; Liu, Z.; Liang, L.; Chen, L.; Qi, Y.; Harris, S. J.; Lu, P.; Chen, L. Understanding and predicting the lithium dendrite formation in Li-ion batteries: Phase field model. ECS Transactions 2014, 61, 1.

41

Nan, Y.; Li, S. M.; Shi, Y. Z.; Yang, S. B.; Li, B. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode. Small 2019, 15, 1903520.

42

Sharifi, T.; Hu, G.; Jia, X. E.; Wagberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904–8912.

43

Rabchinskii, M. K.; Ryzhkov, S. A.; Kirilenko, D. A.; Ulin, N. V.; Baidakova, M. V.; Shnitov, V. V.; Pavlov, S. I.; Chumakov, R. G.; Stolyarova, D. Y.; Besedina, N. A. et al. From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Sci. Rep. 2020, 10, 1–12.

44

Zhang, J.; Li, C. Q.; Peng, Z. K.; Liu, Y. S.; Zhang, J. M.; Liu, Z. Y.; Li, D. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Sci. Rep. 2017, 7, 1–7.

45

Zhang, Q.; Chen, H.; Luo, L.; Zhao, B.; Luo, H.; Han, X.; Wang, J.; Wang, C.; Yang, Y.; Zhu, T.; Liu, M. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ. Sci. 2018, 11, 669–681.

46

Cheng, Y.; Zhang, L.; Zhang, Q.; Li, J.; Tang, Y.; Delmas, C.; Zhu, T.; Winter, M.; Wang, M.; Huang, J. Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Mater. Today 2020, 42, 137–161.

47

Li, Y.; Zhang, Q.; Yuan, Y.; Liu, H.; Yang, C.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

48

Liu, S.; Wang, A.; Li, Q.; Wu, J.; Chiou, K.; Huang, J.; Luo, J. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184–193.

49

Zhang, C.; Liu, S.; Li, G.; Zhang, C.; Liu, X.; Luo, J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 2018, 30, 1801328.

50

He, X.; Yang, Y.; Cristian, M. S.; Wang, J.; Hou, X.; Yan, B.; Li, J.; Zhang, T.; Paillard, E.; Swietoslawski, M. et al. Uniform lithium electrodeposition for stable lithium-metal batteries. Nano Energy 2020, 67, 104172.

51

Zhao, L.; Wu, H. H.; Yang, C.; Zhang, Q.; Zhong, G.; Zheng, Z.; Chen, H.; Wang, J.; He, K.; Wang, B. et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 2018, 12, 12597–12611.

Video
12274_2021_3482_MOESM2_ESM.mp4
File
12274_2021_3482_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2021
Revised: 29 March 2021
Accepted: 29 March 2021
Published: 21 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52072323 and 51872098) and the "Double-First Class" Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University, as well as Postdoctoral Foundation of China (2018M632929).

Return