AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application

Xu Zhang1Kai Zhao1Xu Peng1( )Mohamedally Kurmoo3Ming-Hua Zeng1,2
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering Hubei UniversityWuhan 430062 China
Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal UniversityGuilin 541004 China
Institut de Chimie de Strasbourg CNRS-UMR7177 Université de Strasbourg 4 rue Blaise PascalStrasbourg Cedex 67070 France
Show Author Information

Graphical Abstract

Abstract

The goal of material chemistry is to study the relationship among hierarchical structure, chemical reaction and precision preparation for materials, yet tracking pyrolysis process on multi-dimensional scale is still at primary stage. Here we propose packing mode analysis to understand evolution process in high temperature reaction. As a proof of concept, we first design a salan-ligated Mn3 (Mn3(3-MeOsalophen)2(Cl)2) cluster and pyrolyze it under an inert atmosphere directly to a mixed valence MnOx embedded in a porous N-doped carbon skeleton (MnOx/C). Meanwhile, combining thermogravimetry-mass spectrometry (TG-MS) with other characterization techniques, its pyrolysis process is precisely tracked real-time and Mn2+/Mn3+ ratios in the resulting materials are deduced, ensuring excellent electrochemical advantages. As a result, the as-preferred MnOx/C-900 sample reaches 943 F/g at 1 A/g, maintaining good durability under 5, 000 cycles with 90% retention. The highlight of packing mode analysis strategy in this work would provide a favorable approach to explore the potential relationship between structure and performance in the future.

Electronic Supplementary Material

Download File(s)
12274_2021_3481_MOESM1_ESM.cif (10.2 KB)
12274_2021_3481_MOESM2_ESM.cif (444.9 KB)
12274_2021_3481_MOESM3_ESM.pdf (2.9 MB)

References

1

Whitesides, G. M. Reinventing Chemistry. Angew. Chem., Int. Ed. 2015, 54, 3196–3209.

2

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum M. W.; Simon P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

3

Zhu, X. J.; Guo, Y. Q.; Cheng, H.; Dai, J.; An, X. D.; Zhao, J. Y.; Tian, K. Z.; Wei, S. Q.; Zeng, X. C.; Wu, C. Z. et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 2016, 7, 11210.

4

He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217–7223.

5

Xiao, X.; Zou, L. L.; Pang, H; Xu, Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

6

Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 2017, 29, 1703614.

7

Xue, Y. K.; Li, H. Q.; Ye, X. W. Y.; Yang, S. L.; Zheng, Z. P.; Han, X.; Zhang, X. B.; Chen, L. N.; Xie, Z. X.; Kuang, Q. et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 2019, 12, 2490–2497.

8

Meng, Z. G.; Xiao, F.; Wei, Z. X.; Guo, X. Y.; Zhu, Y.; Liu, Y. R.; Li, G. J.; Yu, Z. Q.; Shao, M. H.; Wong, W. Y. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019, 12, 2954–2959.

9

Xue, Z. Q.; Liu, K.; Liu, Q. L.; Li, Y. L.; Li, M. R.; Su, C. Y.; Ogiwara, N.; Kobayashi, H.; Kitagawa, H.; Liu, M. et al. Missing- linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 2019, 10, 5048.

10

Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2017, 8, 1702048.

11

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

12

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core–shell ZIF-8@ZIF-67- derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

13

Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

14

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal– organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

15

Chu, Y. T.; Guo, L. Y.; Xi, B. J.; Feng, Z. Y; Wu, F. F.; Lin, Y.; Liu, J. C.; Sun, D.; Feng, J. K.; Qian, Y. T. et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn- Organic clusters for efficient lithium storage. Adv. Mater. 2018, 30, 1704244.

16

Zhao J. Q.; Cai, D. D.; Dai, J.; Kurmoo, M.; Peng, X.; Zeng, M. H. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Sci. Bull. 2019, 64, 1667–1674.

17

Pan, B. X.; Peng, X.; Wang, Y. F.; An, Q.; Zhang, X.; Zhang, Y. X.; Teets, T. S.; Zeng, M. H. Tracking the pyrolysis process of a 3- MeOsalophen-ligand based Co2 complex for promoted oxygen evolution reaction. Chem. Sci. 2019, 10, 4560–4566.

18

Wang, Y. F.; Liang, Y. Y.; Wu, Y. F.; Yang, J.; Zhang, X.; Cai, D. D.; Peng, X.; Kurmoo, M.; Zeng, M. H. In situ pyrolysis tracking and real- time phase evolution: From a binary zinc cluster to supercapacitive porous carbon. Angew. Chem., Int. Ed. 2020, 59, 13232–13237.

19

Hu, Y. T.; Wu, Y.; Wang, J. Manganese-oxide-based electrode materials for energy storage applications: How close are we to the theoretical capacitance? Adv. Mater. 2018, 30, 1802569.

20

Wu, J. C.; Peng, X.; Guo, Y. Q.; Zhou, H. D.; Zhao, J. Y.; Ruan, K. Q.; Chu, W. S.; Wu, C. Z. Ultrathin nanosheets of Mn3O4: A new two- dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys. 2018, 13, 138110.

21

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

22

Gadipelli, S.; Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield-a case for superior CO2 capture. ChemSusChem 2015, 8, 2123–2132.

23

Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two- dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.

24

Guo, Y. Q.; Tong, Y.; Chen, P. Z.; Xu, K.; Zhao, J. Y.; Lin, Y.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015, 27, 5989–5994.

25

Chen, S. J.; Cai, D. P.; Yang, X. H.; Chen, Q. D.; Zhan, H. B.; Qu, B. H.; Wang, T. H. Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries. Electrochim. Acta 2017, 256, 63–72.

26

Yang, M.; Zhong, Y. R.; Zhou, X. L.; Ren, J. J.; Su, L. W.; Wei, J. P.; Zhou, Z. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 12519– 12525.

27

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

28

Ćirić-Marjanović, G.; Pašt, I.; Mentus, S. One-dimensional nitrogen- containing carbon nanostructures. Prog. Mater. Sci. 2015, 69, 61– 182.

29

Liao, Q. Y.; Li, N.; Cui, H.; Wang, C. X. Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 13715–13720.

30

Young, C.; Kim, J.; Kaneti, Y. V.; Yamauchi, Y. One-step synthetic strategy of hybrid materials from bimetallic metal–organic frameworks for supercapacitor applications. ACS Appl. Energy Mater. 2018, 1, 2007–2015.

31

Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal– organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463.

32

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

33

Li, L.; Hu, Z. A.; An, N.; Yang, Y. Y.; Li, Z. M.; Wu, H. Y. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 2014, 118, 22865–22872.

34

Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43, 1293–1302.

35

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

36

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008, 120, 3440–3443.

37

Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214.

38

Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

39

Wu, J. J.; Peng, J.; Yu, Z.; Zhou, Y.; Guo, Y. Q.; Li, Z. J.; Lin, Y.; Ruan, Z. Q.; Wu, C. Z.; Xie, Y. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 2018, 140, 493–498.

Nano Research
Pages 346-351
Cite this article:
Zhang X, Zhao K, Peng X, et al. In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application. Nano Research, 2022, 15(1): 346-351. https://doi.org/10.1007/s12274-021-3481-1
Topics:

819

Views

14

Crossref

14

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 29 January 2021
Revised: 29 March 2021
Accepted: 29 March 2021
Published: 25 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return