Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The on-demand modulation of defects in materials for the effective modulation of optical nonlinearity is desirable, while it remains a great challenge. In this work, we demonstrate that electrochemical activation is a facile and convenient approach to modulating the broadband third-order nonlinear absorption of nanoporous tungsten oxide (WO3–x) thin film. The film does not exhibit optical nonlinearity at the initial state, while shows a distinct saturable absorption under an applied voltage of –2.5 V with the excitation of 515, 800, and 1, 030 nm laser. The nonlinear absorption coefficient (βeff) is –766.38 ± 6.67 cm·GW–1 for 1, 030 nm laser, –624.24 ± 17.15 cm·GW–1 for 800 nm laser, and –120.70 ± 11.49 cm·GW–1 for 515 nm laser, and the performance is competitive among inorganic saturable absorbers. The activation is accomplished in 2 min. The performance enhancement is ascribed to the formation of abundant in-gap defect states because of the reduction of the tungsten atoms, and a Pauli-blocking effect occurs during the excitation of in-gap defect states. The small feature size of WO3–x (~ 12 nm) enables the effective and fast introduction and removal of the defects in porous film, and accordingly the fast and broadband modulation of optical nonlinearity. Our results suggest a controllable, effective, and convenient approach to tuning the nonlinear absorption of materials.
Garmire, E. Nonlinear optics in daily life. Opt. Express 2013, 21, 30532–30544.
Fermann, M. E.; Hartl, I. Ultrafast fiber laser technology. IEEE J. Select. Top. Quantum Electron. 2009, 15, 191–206.
Cotter, D.; Manning, R. J.; Blow, K. J.; Ellis, A. D.; Kelly, A. E.; Nesset, D.; Phillips, D. I.; Poustie, A. J.; Rogers, D. C. Nonlinear optics for high-speed digital information processing. Science 1999, 286, 1523–1528.
Grinblat, G.; Berté, R.; Nielsen, M. P.; Li, Y.; Oulton, R. F.; Maier, S. A. Sub-20 fs all-optical switching in a single Au-clad Si nanodisk. Nano Lett. 2018, 18, 7896–7900.
Glezer, E. N.; Milosavljevic, M.; Huang, L.; Finlay, R. J.; Her, T. H.; Callan, J. P.; Mazur, E. Three-dimensional optical storage inside transparent materials. Opt. Lett. 1996, 21, 2023–2025.
Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.
Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377.
Leach, J.; Jack, B.; Romero, J.; Jha, A. K.; Yao, A. M.; Franke- Arnold, S.; Ireland, D. G.; Boyd, R. W.; Barnett, S. M.; Padgett, M. J. Quantum correlations in optical angle–orbital angular momentum variables. Science 2010, 329, 662–665.
Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233.
Mao, D.; Wang, Y. D.; Ma, C. J.; Han, L.; Jiang, B. Q.; Gan, X. T.; Hua, S. J.; Zhang, W. D.; Mei, T.; Zhao, J. L. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965.
Zhang, S. F.; Dong, N. N.; McEvoy, N.; O'Brien, M.; Winters, S.; Berner, N. C.; Yim, C. Li, Y. X.; Zhang, X. Y.; Chen, Z. H.; Zhang, L. et al. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano 2015, 9, 7142–7150.
Chen, B. H.; Zhang, X. Y.; Wu, K.; Wang, H.; Wang, J.; Chen, J. P. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26737.
Koo, J.; Jhon, Y. I.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Near- infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 2016, 26, 7454–7461.
Quan, C. J.; He, M. M.; He, C.; Huang, Y. Y.; Zhu, L. P.; Yao, Z. H.; Xu, X.; Lu, C. H.; Xu, X. L. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 2018, 457, 115–120.
Zhang, X. Y.; Zhang, S. F.; Xie, Y. F.; Huang, J. W.; Wang, L.; Cui, Y.; Wang, J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 2018, 10, 17924–17932.
Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.
Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.
Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.
Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.
Lu, L.; Tang, X.; Cao, R.; Wu, L. M.; Li, Z. J.; Jing, G. H.; Dong, B. Q.; Lu, S. B.; Li, Y.; Xiang, Y. J. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 2017, 5, 1700301.
Chung, S. J.; Rumi, M.; Alain, V.; Barlow, S.; Perry, J. W.; Marder, S. R. Strong, low-energy two-photon absorption in extended amine- terminated cyano-substituted phenylenevinylene oligomers. J. Am. Chem. Soc. 2005, 127, 10844–10845.
Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.
Powell, C. E.; Humphrey, M. G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord. Chem. Rev. 2004, 248, 725–756.
Girisun, T. C. S.; Dhanuskodi, S.; Vinitha, G. χ(3) measurement and optical limiting properties of metal complexes of thiourea using Z-scan. Mater. Chem. Phys. 2011, 129, 9–14.
Zhou, K. G.; Zhao, M.; Chang, M. J.; Wang, Q.; Wu, X. Z.; Song, Y. L.; Zhang, H. L. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small 2015, 11, 694–701.
Lafetá, L.; Cadore, A. R.; Mendes-de-Sa, T. G.; Watanabe, K.; Taniguchi, T.; Campos, L. C.; Jorio, A.; Malard, L. M. Anomalous nonlinear optical response of graphene near phonon resonances. Nano Lett. 2017, 17, 3447–3451.
Maji, T. K.; Aswin, J. R.; Mukherjee, S.; Alexander, R.; Mondal, A.; Das, S.; Sharma, R. K.; Chakraborty, N. K.; Dasgupta, K.; Sharma, A. M. R. et al. Combinatorial large-Area MoS2/anatase-TiO2 interface: A pathway to emergent optical and optoelectronic functionalities. ACS Appl. Mater. Interfaces 2020, 12, 44345–44359.
Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.
Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.
Kuis, R.; Gougousi, T.; Basaldua, I.; Burkins, P.; Kropp, J. A.; Johnson, A. M. Engineering of large third-order nonlinearities in atomic layer deposition grown nitrogen-enriched TiO2. ACS Photonics 2019, 6, 2966–2973.
Wei, R. F.; Qiao, T.; Tian, X. L.; Zhang, H.; He, X.; Hu, Z. L.; Chen, Q. Q.; Qiu, J. R. Enhanced nonlinear optical response of Se-doped MoS2 nanosheets for passively Q-switched fiber laser application. Nanotechnology 2017, 28, 215206.
Wang, S. X.; Yu, H. H.; Zhang, H. J.; Wang, A. Z.; Zhao, M. W.; Chen, Y. X.; Mei, L. M.; Wang, J. Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.
Anand, B.; Krishnan, S. R.; Podila, R.; Sai, S. S. S.; Rao, A. M.; Philip, R. The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys. 2014, 16, 8168–8177.
Stehr, J. E.; Chen, S. L.; Reddy, N. K.; Tu, C. W.; Chen, W. M.; Buyanova, I. A. Turning ZnO into an efficient energy upconversion material by defect engineering. Adv. Funct. Mater. 2014, 24, 3760–3764.
Ou, J. Z.; Balendhran, S.; Field, M. R.; McCulloch, D. G.; Zoolfakar, A. S.; Rani, R. A.; Zhuiykov, S.; O'Mullane, A. P.; Kalantar-Zadeh, K. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 2012, 4, 5980–5988.
Lee, S. H.; Seong, M. J.; Cheong, H. M.; Ozkan, E.; Tracy, E. C.; Deb, S. K. Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid State Ion. 2003, 156, 447–452.
Thi, M. P.; Velasco, G. Raman study of WO3 thin films. Solid State Ion. 1984, 14, 217–220.
Garcia-Sanchez, R. F.; Ahmido, T.; Casimir, D.; Baliga, S.; Misra, P. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials. J. Phys. Chem. A 2013, 117, 13825–13831.
Luo, J. Y.; Deng, S. Z.; Tao, Y. T.; Zhao, F. L.; Zhu, L. F.; Gong, L.; Chen, J.; Xu, N. S. Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. C 2009, 113, 15877–15881.
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.
Vemuri, R. S.; Engelhard, M. H.; Ramana, C. V. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 2012, 4, 1371–1377.
Cong, S.; Tian, Y. Y.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Single- crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 2014, 26, 4260–4267.
Song, Y. Y.; Gao, Z. D.; Wang, J. H.; Xia, X. H.; Lynch, R. Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. Adv. Funct. Mater. 2011, 21, 1941–1946.
Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A Synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.
Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. In situ Raman spectroscopy of H2 gas interaction with layered MoO3. J. Phys. Chem. C 2011, 115, 10757–10763.
Lee, S. H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Czanderna, A. W.; Deb, S. K. Electrochromic coloration efficiency of a-WO3–y thin films as a function of oxygen deficiency. Appl. Phys. Lett. 1999, 75, 1541–1543.
Lee, Y.; Yun, J.; Seo, M.; Kim, S. J.; Oh, J.; Kang, C. M.; Sun, H. J.; Chung, T. D.; Lee, B. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 2020, 20, 6084–6090.
Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D. A.; Wenzel, S.; Janek, J.; Elm, M. T.; Klar, P. J. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 2015, 17, 15903–15911.
Henningsson, A.; Stashans, A.; Sandell, A.; Rensmo, H.; Södergren, S.; Lindström, H.; Vayssieres, L.; Hagfeldt, A.; Lunell, S.; Siegbahn, H. Proton insertion in polycrystalline WO3 studied with electron spectroscopy and semi-empirical calculations. Adv. Quantum Chem. 2004, 47, 23–36.
Su, L. Y.; Lu, Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. J. Phys. Chem. Solids 1998, 59, 1175–1180.
De Angelis, B. A.; Schiavello, M. The oxidation state of tungsten in NaxWO3 bronzes as determined by X-ray photoelectron spectroscopy. Chem. Phys. Lett. 1976, 38, 155–157.
Tu, J. G.; Lei, H. P.; Yu, Z. J.; Jiao, S. Q. Ordered WO3–x nanorods: Facile synthesis and their electrochemical properties for aluminum- ion batteries. Chem. Commun. 2018, 54, 1343–1346.
Yao, J. N.; Chen, P.; Fujishima, A. Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 1996, 406, 223–226.
Modugno, G.; Roati, G.; Riboli, F.; Ferlaino, F.; Brecha, R. J.; Inguscio, M. Collapse of a degenerate Fermi gas. Science 2002, 297, 2240–2243.
Wang, F. G.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B 2011, 84, 073103.
Sachs, M.; Park, J. S.; Pastor, E.; Kafizas, A.; Wilson, A. A.; Francàs, L.; Gul, S.; Ling, M.; Blackman, C.; Yano, J. et al. Effect of oxygen deficiency on the excited state kinetics of WO3 and implications for photocatalysis. Chem. Sci. 2019, 10, 5667–5677.
Alam, M. Z.; De Leon, I.; Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797.
Guo, Q. B.; Cui, Y. D.; Yao, Y. H.; Ye, Y. T.; Yang, Y.; Liu, X. M.; Zhang, S. A.; Liu, X. F.; Qiu, J. R.; Hosono, H. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 2017, 29, 1700754
Dixon, S. C.; Scanlon, D. O.; Carmalt, C. J.; Parkin, I. P. n-Type doped transparent conducting binary oxides: An overview. J. Mater. Chem. C 2016, 4, 6946–6961.