Journal Home > Volume 15 , Issue 1

The on-demand modulation of defects in materials for the effective modulation of optical nonlinearity is desirable, while it remains a great challenge. In this work, we demonstrate that electrochemical activation is a facile and convenient approach to modulating the broadband third-order nonlinear absorption of nanoporous tungsten oxide (WO3–x) thin film. The film does not exhibit optical nonlinearity at the initial state, while shows a distinct saturable absorption under an applied voltage of –2.5 V with the excitation of 515, 800, and 1, 030 nm laser. The nonlinear absorption coefficient (βeff) is –766.38 ± 6.67 cm·GW–1 for 1, 030 nm laser, –624.24 ± 17.15 cm·GW–1 for 800 nm laser, and –120.70 ± 11.49 cm·GW–1 for 515 nm laser, and the performance is competitive among inorganic saturable absorbers. The activation is accomplished in 2 min. The performance enhancement is ascribed to the formation of abundant in-gap defect states because of the reduction of the tungsten atoms, and a Pauli-blocking effect occurs during the excitation of in-gap defect states. The small feature size of WO3–x (~ 12 nm) enables the effective and fast introduction and removal of the defects in porous film, and accordingly the fast and broadband modulation of optical nonlinearity. Our results suggest a controllable, effective, and convenient approach to tuning the nonlinear absorption of materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fast electrochemical activation of the broadband saturable absorption of tungsten oxide nanoporous film

Show Author's information Ruipeng Hou1Hui Li1Mengjuan Diao1Yanhui Sun1Ying Liang1Zhiyang Yu2Zhipeng Huang1( )Chi Zhang1( )
School of Chemical Science and Engineering Tongji UniversityShanghai 200092 China
State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou 350002 China

Abstract

The on-demand modulation of defects in materials for the effective modulation of optical nonlinearity is desirable, while it remains a great challenge. In this work, we demonstrate that electrochemical activation is a facile and convenient approach to modulating the broadband third-order nonlinear absorption of nanoporous tungsten oxide (WO3–x) thin film. The film does not exhibit optical nonlinearity at the initial state, while shows a distinct saturable absorption under an applied voltage of –2.5 V with the excitation of 515, 800, and 1, 030 nm laser. The nonlinear absorption coefficient (βeff) is –766.38 ± 6.67 cm·GW–1 for 1, 030 nm laser, –624.24 ± 17.15 cm·GW–1 for 800 nm laser, and –120.70 ± 11.49 cm·GW–1 for 515 nm laser, and the performance is competitive among inorganic saturable absorbers. The activation is accomplished in 2 min. The performance enhancement is ascribed to the formation of abundant in-gap defect states because of the reduction of the tungsten atoms, and a Pauli-blocking effect occurs during the excitation of in-gap defect states. The small feature size of WO3–x (~ 12 nm) enables the effective and fast introduction and removal of the defects in porous film, and accordingly the fast and broadband modulation of optical nonlinearity. Our results suggest a controllable, effective, and convenient approach to tuning the nonlinear absorption of materials.

Keywords: electrochemical activation, tungsten oxide, nonlinear absorption, in-gap states

References(60)

1

Garmire, E. Nonlinear optics in daily life. Opt. Express 2013, 21, 30532–30544.

2

Fermann, M. E.; Hartl, I. Ultrafast fiber laser technology. IEEE J. Select. Top. Quantum Electron. 2009, 15, 191–206.

3

Cotter, D.; Manning, R. J.; Blow, K. J.; Ellis, A. D.; Kelly, A. E.; Nesset, D.; Phillips, D. I.; Poustie, A. J.; Rogers, D. C. Nonlinear optics for high-speed digital information processing. Science 1999, 286, 1523–1528.

4

Grinblat, G.; Berté, R.; Nielsen, M. P.; Li, Y.; Oulton, R. F.; Maier, S. A. Sub-20 fs all-optical switching in a single Au-clad Si nanodisk. Nano Lett. 2018, 18, 7896–7900.

5

Glezer, E. N.; Milosavljevic, M.; Huang, L.; Finlay, R. J.; Her, T. H.; Callan, J. P.; Mazur, E. Three-dimensional optical storage inside transparent materials. Opt. Lett. 1996, 21, 2023–2025.

6

Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.

7

Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1369–1377.

8

Leach, J.; Jack, B.; Romero, J.; Jha, A. K.; Yao, A. M.; Franke- Arnold, S.; Ireland, D. G.; Boyd, R. W.; Barnett, S. M.; Padgett, M. J. Quantum correlations in optical angle–orbital angular momentum variables. Science 2010, 329, 662–665.

9

Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 13043–13233.

10

Mao, D.; Wang, Y. D.; Ma, C. J.; Han, L.; Jiang, B. Q.; Gan, X. T.; Hua, S. J.; Zhang, W. D.; Mei, T.; Zhao, J. L. WS2 mode-locked ultrafast fiber laser. Sci. Rep. 2015, 5, 7965.

11

Zhang, S. F.; Dong, N. N.; McEvoy, N.; O'Brien, M.; Winters, S.; Berner, N. C.; Yim, C. Li, Y. X.; Zhang, X. Y.; Chen, Z. H.; Zhang, L. et al. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano 2015, 9, 7142–7150.

12

Chen, B. H.; Zhang, X. Y.; Wu, K.; Wang, H.; Wang, J.; Chen, J. P. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26737.

13

Koo, J.; Jhon, Y. I.; Park, J.; Lee, J.; Jhon, Y. M.; Lee, J. H. Near- infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking. Adv. Funct. Mater. 2016, 26, 7454–7461.

14

Quan, C. J.; He, M. M.; He, C.; Huang, Y. Y.; Zhu, L. P.; Yao, Z. H.; Xu, X.; Lu, C. H.; Xu, X. L. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity. Appl. Surf. Sci. 2018, 457, 115–120.

15

Zhang, X. Y.; Zhang, S. F.; Xie, Y. F.; Huang, J. W.; Wang, L.; Cui, Y.; Wang, J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 2018, 10, 17924–17932.

16

Ge, Y. Q.; Zhu, Z. F.; Xu, Y. H.; Chen, Y. X.; Chen, S.; Liang, Z. M.; Song, Y. F.; Zou, Y. S.; Zeng, H. B.; Xu, S. X. et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.

17

Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

18

Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.

19

Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

20

Lu, L.; Tang, X.; Cao, R.; Wu, L. M.; Li, Z. J.; Jing, G. H.; Dong, B. Q.; Lu, S. B.; Li, Y.; Xiang, Y. J. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 2017, 5, 1700301.

21

Chung, S. J.; Rumi, M.; Alain, V.; Barlow, S.; Perry, J. W.; Marder, S. R. Strong, low-energy two-photon absorption in extended amine- terminated cyano-substituted phenylenevinylene oligomers. J. Am. Chem. Soc. 2005, 127, 10844–10845.

22

Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear optical properties of porphyrins. Adv. Mater. 2007, 19, 2737–2774.

23

Powell, C. E.; Humphrey, M. G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord. Chem. Rev. 2004, 248, 725–756.

24

Girisun, T. C. S.; Dhanuskodi, S.; Vinitha, G. χ(3) measurement and optical limiting properties of metal complexes of thiourea using Z-scan. Mater. Chem. Phys. 2011, 129, 9–14.

25

Zhou, K. G.; Zhao, M.; Chang, M. J.; Wang, Q.; Wu, X. Z.; Song, Y. L.; Zhang, H. L. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets. Small 2015, 11, 694–701.

26

Lafetá, L.; Cadore, A. R.; Mendes-de-Sa, T. G.; Watanabe, K.; Taniguchi, T.; Campos, L. C.; Jorio, A.; Malard, L. M. Anomalous nonlinear optical response of graphene near phonon resonances. Nano Lett. 2017, 17, 3447–3451.

27

Maji, T. K.; Aswin, J. R.; Mukherjee, S.; Alexander, R.; Mondal, A.; Das, S.; Sharma, R. K.; Chakraborty, N. K.; Dasgupta, K.; Sharma, A. M. R. et al. Combinatorial large-Area MoS2/anatase-TiO2 interface: A pathway to emergent optical and optoelectronic functionalities. ACS Appl. Mater. Interfaces 2020, 12, 44345–44359.

28

Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

29

Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

30

Kuis, R.; Gougousi, T.; Basaldua, I.; Burkins, P.; Kropp, J. A.; Johnson, A. M. Engineering of large third-order nonlinearities in atomic layer deposition grown nitrogen-enriched TiO2. ACS Photonics 2019, 6, 2966–2973.

31

Wei, R. F.; Qiao, T.; Tian, X. L.; Zhang, H.; He, X.; Hu, Z. L.; Chen, Q. Q.; Qiu, J. R. Enhanced nonlinear optical response of Se-doped MoS2 nanosheets for passively Q-switched fiber laser application. Nanotechnology 2017, 28, 215206.

32

Wang, S. X.; Yu, H. H.; Zhang, H. J.; Wang, A. Z.; Zhao, M. W.; Chen, Y. X.; Mei, L. M.; Wang, J. Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.

33

Anand, B.; Krishnan, S. R.; Podila, R.; Sai, S. S. S.; Rao, A. M.; Philip, R. The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures. Phys. Chem. Chem. Phys. 2014, 16, 8168–8177.

34

Stehr, J. E.; Chen, S. L.; Reddy, N. K.; Tu, C. W.; Chen, W. M.; Buyanova, I. A. Turning ZnO into an efficient energy upconversion material by defect engineering. Adv. Funct. Mater. 2014, 24, 3760–3764.

35

Ou, J. Z.; Balendhran, S.; Field, M. R.; McCulloch, D. G.; Zoolfakar, A. S.; Rani, R. A.; Zhuiykov, S.; O'Mullane, A. P.; Kalantar-Zadeh, K. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 2012, 4, 5980–5988.

36

Lee, S. H.; Seong, M. J.; Cheong, H. M.; Ozkan, E.; Tracy, E. C.; Deb, S. K. Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid State Ion. 2003, 156, 447–452.

37

Thi, M. P.; Velasco, G. Raman study of WO3 thin films. Solid State Ion. 1984, 14, 217–220.

38

Garcia-Sanchez, R. F.; Ahmido, T.; Casimir, D.; Baliga, S.; Misra, P. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials. J. Phys. Chem. A 2013, 117, 13825–13831.

39

Luo, J. Y.; Deng, S. Z.; Tao, Y. T.; Zhao, F. L.; Zhu, L. F.; Gong, L.; Chen, J.; Xu, N. S. Evidence of localized water molecules and their role in the gasochromic effect of WO3 nanowire films. J. Phys. Chem. C 2009, 113, 15877–15881.

40

Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.

41

Vemuri, R. S.; Engelhard, M. H.; Ramana, C. V. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 2012, 4, 1371–1377.

42

Cong, S.; Tian, Y. Y.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Single- crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 2014, 26, 4260–4267.

43

Song, Y. Y.; Gao, Z. D.; Wang, J. H.; Xia, X. H.; Lynch, R. Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. Adv. Funct. Mater. 2011, 21, 1941–1946.

44

Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A Synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

45

Ou, J. Z.; Campbell, J. L.; Yao, D.; Wlodarski, W.; Kalantar-Zadeh, K. In situ Raman spectroscopy of H2 gas interaction with layered MoO3. J. Phys. Chem. C 2011, 115, 10757–10763.

46

Lee, S. H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Czanderna, A. W.; Deb, S. K. Electrochromic coloration efficiency of a-WO3–y thin films as a function of oxygen deficiency. Appl. Phys. Lett. 1999, 75, 1541–1543.

47

Lee, Y.; Yun, J.; Seo, M.; Kim, S. J.; Oh, J.; Kang, C. M.; Sun, H. J.; Chung, T. D.; Lee, B. Full-color-tunable nanophotonic device using electrochromic tungsten trioxide thin film. Nano Lett. 2020, 20, 6084–6090.

48

Darmawi, S.; Burkhardt, S.; Leichtweiss, T.; Weber, D. A.; Wenzel, S.; Janek, J.; Elm, M. T.; Klar, P. J. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 2015, 17, 15903–15911.

49

Henningsson, A.; Stashans, A.; Sandell, A.; Rensmo, H.; Södergren, S.; Lindström, H.; Vayssieres, L.; Hagfeldt, A.; Lunell, S.; Siegbahn, H. Proton insertion in polycrystalline WO3 studied with electron spectroscopy and semi-empirical calculations. Adv. Quantum Chem. 2004, 47, 23–36.

50

Su, L. Y.; Lu, Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. J. Phys. Chem. Solids 1998, 59, 1175–1180.

51

De Angelis, B. A.; Schiavello, M. The oxidation state of tungsten in NaxWO3 bronzes as determined by X-ray photoelectron spectroscopy. Chem. Phys. Lett. 1976, 38, 155–157.

52

Tu, J. G.; Lei, H. P.; Yu, Z. J.; Jiao, S. Q. Ordered WO3–x nanorods: Facile synthesis and their electrochemical properties for aluminum- ion batteries. Chem. Commun. 2018, 54, 1343–1346.

53

Yao, J. N.; Chen, P.; Fujishima, A. Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 1996, 406, 223–226.

54

Modugno, G.; Roati, G.; Riboli, F.; Ferlaino, F.; Brecha, R. J.; Inguscio, M. Collapse of a degenerate Fermi gas. Science 2002, 297, 2240–2243.

55

Wang, F. G.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B 2011, 84, 073103.

56

Sachs, M.; Park, J. S.; Pastor, E.; Kafizas, A.; Wilson, A. A.; Francàs, L.; Gul, S.; Ling, M.; Blackman, C.; Yano, J. et al. Effect of oxygen deficiency on the excited state kinetics of WO3 and implications for photocatalysis. Chem. Sci. 2019, 10, 5667–5677.

57

Alam, M. Z.; De Leon, I.; Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797.

58

Guo, Q. B.; Cui, Y. D.; Yao, Y. H.; Ye, Y. T.; Yang, Y.; Liu, X. M.; Zhang, S. A.; Liu, X. F.; Qiu, J. R.; Hosono, H. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 2017, 29, 1700754

59
Malik, O.; De La Hidalga-Wade, F. J. Surface-barrier photodiodes with transparent electrodes for high-performance detection in the UV–NIR spectrum. In Optoelectronics-Advanced Device Structures. Pyshkin, S. L.; Ballato, J., Eds.; InTechOpen: Rijeka, Croatia, 2017.https://doi.org/10.5772/67469
DOI
60

Dixon, S. C.; Scanlon, D. O.; Carmalt, C. J.; Parkin, I. P. n-Type doped transparent conducting binary oxides: An overview. J. Mater. Chem. C 2016, 4, 6946–6961.

File
12274_2021_3478_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2021
Revised: 25 March 2021
Accepted: 28 March 2021
Published: 29 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 51772214, 51432006, and 51701170), the Ministry of Science and Technology of China (No. 2011DFG52970), the Ministry of Education of China (IRT14R23), 111 Project (No. B13025), the Innovation Program of Shanghai Municipal Education Commission, the national youth talent support program (No. W03070073), and the project of science and technology plan of Fujian Province (No. 2018J01520).

Return