41
Views
1
Downloads
4
Crossref
4
WoS
5
Scopus
Plasmon coupling is an essential strategy to realize strong local electromagnetic (EM) field which is crucial for high-performance plasmonic devices. In this work, multiple plasmon couplings are demonstrated in three-dimensional (3D) hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone (AgNC) arrays decorated with high-density gold nanoparticles (AuNPs) which are fabricated by a template-assisted physical vapor deposition process. Strong interparticle coupling, particle-film coupling, inter-cone coupling, and particle-cone coupling are revealed by numerical simulations in such composite nanostructures, which produce intense and high-density EM hot spots, boosting highly sensitive and reproducible surface enhanced Raman scattering (SERS) detection with an enhancement factor of ~ 1.74 × 108. Furthermore, a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range. These results offer new ideas to develop novel plasmonic devices, and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis.
FullText for HTML:https://doi.org/10.1007/s12274-021-3477-x
This work was supported by the National Natural Science Foundation of China (No. 51871003).
Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn