Journal Home > Volume 15 , Issue 1

Well-tailored nanomaterials with a single-crystal character provide ideal building blocks for on-chip plasmonic devices. Although colloidal methods have demonstrated mastery over the synthesis of such structures, it has proven quite difficult to deploy these same nanomaterials on substrate surfaces in a highly deterministic manner where precise control over position and orientation is ensured. Herein, we demonstrate a room-temperature two-reagent liquid-phase seed-mediated synthesis of gold nanoplates directly on substrate surfaces in arrays over a square-centimeter area. The synthesis is reliant on benchtop lithographic and directed-assembly processes that give rise to single-crystal seeds of gold that express both an epitaxial relationship with the underlying substrate and the internal defect structure required to promote a two-dimensional growth mode. The resulting structures are highly faceted and, because seed-substrate epitaxy is imposed upon the growing nanoplates, are identically aligned on the substrate surface. Nanoplate yields are increased to values as high as 95% using a post-processing sonication procedure that selectively removes a small population of irregularly shaped nanostructures from the substrate surface, and in doing so, gives rise to an uncompromised plasmonic response. The work, therefore, advances the techniques needed to integrate single-crystal nanomaterials with wafer-based technologies and provides leading-edge capabilities in terms of defining large-area arrays of plasmonic structures with the nanoplate geometry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Epitaxially aligned single-crystal gold nanoplates formed in large- area arrays at high yield

Show Author's information Trevor B. Demille1,§Robert D. Neal1,§Arin S. Preston1Zijuan Liang1Allen G. Oliver2Robert A. Hughes1Svetlana Neretina1,2( )
College of Engineering University of Notre DameNotre DameIndiana 46556 USA
Department of Chemistry and Biochemistry University of Notre DameNotre DameIndiana 46556 USA

§ Trevor B. Demille and Robert D. Neal contributed equally to this work.

Abstract

Well-tailored nanomaterials with a single-crystal character provide ideal building blocks for on-chip plasmonic devices. Although colloidal methods have demonstrated mastery over the synthesis of such structures, it has proven quite difficult to deploy these same nanomaterials on substrate surfaces in a highly deterministic manner where precise control over position and orientation is ensured. Herein, we demonstrate a room-temperature two-reagent liquid-phase seed-mediated synthesis of gold nanoplates directly on substrate surfaces in arrays over a square-centimeter area. The synthesis is reliant on benchtop lithographic and directed-assembly processes that give rise to single-crystal seeds of gold that express both an epitaxial relationship with the underlying substrate and the internal defect structure required to promote a two-dimensional growth mode. The resulting structures are highly faceted and, because seed-substrate epitaxy is imposed upon the growing nanoplates, are identically aligned on the substrate surface. Nanoplate yields are increased to values as high as 95% using a post-processing sonication procedure that selectively removes a small population of irregularly shaped nanostructures from the substrate surface, and in doing so, gives rise to an uncompromised plasmonic response. The work, therefore, advances the techniques needed to integrate single-crystal nanomaterials with wafer-based technologies and provides leading-edge capabilities in terms of defining large-area arrays of plasmonic structures with the nanoplate geometry.

Keywords: substrate, nanoplates, plasmon, array, epitaxial, Brij-700 block copolymer

References(51)

1

Zhang, H. Y.; Kinnear, C.; Mulvaney, P. Fabrication of single- nanocrystal arrays. Adv. Mater. 2020, 32, 1904551.

2

Hughes, R. A.; Menumerov, E.; Neretina, S. When lithography meets self-assembly: A review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology 2017, 28, 282002.

3

Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O'Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P. et al. Building superlattices from individual nanoparticles via template- confined DNA-mediated assembly. Science 2018, 359, 669–672.

4

Zhou, W. J.; Liu, Z. Z.; Huang, Z. Y.; Lin, H. X.; Samanta, D.; Lin, Q. Y.; Aydin, K.; Mirkin, C. A. Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly. Proc. Natl. Acad. Sci. USA 2020, 117, 21052–21057.

5

Ni, S. B.; Isa, L.; Wolf, H. Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter 2018, 14, 2978–2995.

6

Flauraud, V.; Mastrangeli, M.; Bernasconi, G. D.; Butet, J.; Alexander, D. T. L.; Shahrabi, E.; Martin, O. J. F.; Brugger, J. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 2017, 12, 73–80.

7

Neretina, S.; Hughes, R. A.; Gilroy, K. D.; Hajfathalian, M. Noble metal nanostructure synthesis at the liquid–substrate interface: New structures, new insights, and new possibilities. Acc. Chem. Res. 2016, 49, 2243–2250.

8

Kinnear, C.; Cadusch, J.; Zhang, H. Y.; Lu, J. N.; James, T. D.; Roberts, A.; Mulvaney, P. Directed chemical assembly of single and clustered nanoparticles with silanized templates. Langmuir 2018, 34, 7355–7363.

9

Yang, L. L.; Yan, B.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale SERS substrates. Adv. Funct. Mater. 2010, 20, 2619–2628.

10

Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

11

Chen, P. C.; Liu, G. L.; Zhou, Y.; Brown, K. A.; Chernyak, N.; Hedrick, J. L.; He, S.; Xie, Z.; Lin, Q. Y.; Dravid, V. P. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 2015, 137, 9167–9173.

12

Gargiulo, J.; Violi, I. L.; Cerrota, S.; Chvátal, L.; Cortés, E.; Perassi, E. M.; Diaz, F.; Zemánek, P.; Stefani, F. D. Accuracy and mechanistic details of optical printing of single Au and Ag nanoparticles. ACS Nano 2017, 11, 9678–9688.

13

Zhang, H. Y.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. Direct assembly of large area nanoparticle arrays. ACS Nano 2018, 12, 7529–7537.

14

Hong, X.; Tan, C. L.; Chen, J. Z.; Xu, Z. C.; Zhang, H. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Res. 2015, 8, 40–55.

15

Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

16

Golze, S. D.; Hughes, R. A.; Rouvimov, S.; Neal, R. D.; Demille, T. B.; Neretina, S. Plasmon-mediated synthesis of periodic arrays of gold nanoplates using substrate-immobilized seeds lined with planar defects. Nano Lett. 2019, 19, 5653–5660.

17

Yoo, Y.; Kim, S. I.; Kim, J.; Kim, B. Geometry-tailored freestanding epitaxial Pd, AuPd, and Au nanoplates driven by surface interactions. Nanoscale 2020, 12, 6537–6544.

18

Yoo, Y.; Lee, H.; Lee, H.; Lee, M.; Yang, S.; Hwang, A.; Kim, S. I.; Park, J. Y.; Choo, J.; Kang, T. et al. Surfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces. Chem. Mater. 2017, 29, 8747–8756.

19

Sun, Y. G. Metal nanoplates on semiconductor substrates. Adv. Funct. Mater. 2010, 20, 3646–3657.

20

Wu, Q. Y.; Diao, P.; Sun, J.; Jin, T.; Xu, D.; Xiang, M. Electrodeposition of vertically aligned silver nanoplate arrays on indium tin oxide substrates. J. Phys. Chem. C 2015, 119, 20709–20720.

21

Seo, B.; Choi, S.; Kim, J. Simple electrochemical deposition of Au nanoplates from Au(Ⅰ) cyanide complexes and their electrocatalytic activities. ACS Appl. Mater. Interfaces 2011, 3, 441–446.

22

Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.

23

Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

24

Liebig, F.; Sarhan, R. M.; Prietzel, C.; Reinecke, A.; Koetz, J. "Green" gold nanotriangles: Synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering. RSC Adv. 2016, 6, 33561–33568.

25

Fu, Q.; Ran, G. J.; Xu, W. L. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 2016, 9, 3247–3256.

26

Liyanage, T.; Masterson, A. N.; Hati, S.; Ren, G.; Manicke, N. E.; Rusyniak, D. E.; Sardar, R. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma. Analyst 2020, 145, 7662–7672.

27

Walker, D. A.; Browne, K. P.; Kowalczyk, B.; Grzybowski, B. A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem. 2010, 122, 6912–6915.

28

Zhou, Y.; Zhou, X. Z.; Park, D. J.; Torabi, K.; Brown, K. A.; Jones, M. R.; Zhang, C.; Schatz, G. C.; Mirkin, C. A. Shape-selective deposition and assembly of anisotropic nanoparticles. Nano Lett. 2014, 14, 2157–2161.

29

Beeram, S. R.; Zamborini, F. P. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano 2010, 4, 3633–3646.

30

Zhang, X. Y.; Hu, A. M.; Zhang, T.; Lei, W.; Xue, X. J.; Zhou, Y. H.; Duley, W. W. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable Plasmon resonance properties. ACS Nano 2011, 5, 9082–9092.

31

Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012–2022.

32

Liyanage, T.; Masterson, A. N.; Oyem, H. H.; Kaimakliotis, H.; Nguyen, H.; Sardar, R. Plasmoelectronic-based ultrasensitive assay of tumor suppressor microRNAs directly in patient plasma: Design of highly specific early cancer diagnostic technology. Anal. Chem. 2019, 91, 1894–1903.

33

Hwang, A.; Kim, E.; Moon, J.; Lee, H.; Lee, M., Jeong, J.; Lim, E. K.; Jung, J.; Kang, T.; Kim, B. Atomically flat Au nanoplate platforms enable ultraspecific attomolar detection of protein biomarkers. ACS Appl. Mater. Interfaces 2019, 11, 18960–18967.

34

Yang, S.; Park, K.; Kim, B.; Kang, T. Low-temperature vapor-phase synthesis of single-crystalline gold nanostructures: Toward exceptional electrocatalytic activity for methanol oxidation reaction. Nanomaterials 2019, 9, 595.

35

Li, Y. Y.; Diao, P.; Jin, T.; Sun, J.; Xu, D. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim. Acta 2012, 83, 146–154.

36

Jeong, W.; Lee, M.; Lee, H.; Lee, H.; Kim, B.; Park, J. Y. Ultraflat Au nanoplates as a new building block for molecular electronics. Nanotechnology 2016, 27, 215601.

37

Menumerov, E.; Golze, S. D.; Hughes, R. A; Neretina, S. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale 2018, 10, 18186–18194.

38

Tan, T. X.; Zhang, S.; Wang, J.; Zheng, Y. Q.; Lai, H. P.; Liu, J. L.; Qin, F. Q.; Wang, C. Resolving the stacking fault structure of silver nanoplates. Nanoscale 2021, 13, 195–205.

39

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. , Int. Ed. 2017, 56, 60–95.

40

Farzinpour, P.; Sundar, A.; Gilroy, K. D.; Eskin, Z. E.; Hughes, R. A.; Neretina, S. Dynamic templating: A large area processing route for the assembly of periodic arrays of sub-micrometer and nanoscale structures. Nanoscale 2013, 5, 1929–1938.

41

Jang, M. H.; Kim, J. K.; Tak, H.; Yoo, H. Controllable synthesis of multi-layered gold spirangles. J. Mater. Chem. 2011, 21, 17606– 17608.

42

Oh, J. H.; Lee, J. S. One-pot photochemical synthesis of gold nanoplates using nonionic diblock copolymers and their surface functionalization. Bull. Korean Chem. Soc. 2018, 39, 1165–1170.

43

Sun, Z. W.; Chen, X.; Wang, L. Y.; Zhang, G. D.; Jing, B. Synthesis of gold nanoplates in lamellar liquid crystal. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 326, 23–28.

44

Kim, B. H.; Oh, J. H.; Han, S. H.; Yun, Y. J.; Lee, J. S. Combinatorial polymer library approach for the synthesis of silver nanoplates. Chem. Mater. 2012, 24, 4424–4433.

45

Bialas, H.; Heneka, K. Epitaxy of fcc metals on dielectric substrates. Vacuum 1994, 45, 79–87.

46

Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130.

47

Joshi, G. K.; McClory, P. J.; Muhoberac, B. B.; Kumbhar, A.; Smith, K. A.; Sardar, R. Designing efficient localized surface Plasmon resonance-based sensing platforms: Optimization of sensor response by controlling the edge length of gold nanoprisms. J. Phys. Chem. C 2012, 116, 20990–21000.

48

Beeram, S. R.; Zamborini, F. P. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface Plasmon resonance biosensing. J. Am. Chem. Soc. 2009, 131, 11689– 11691.

49

Jiang, T.; Wang, X. L.; Tang, J.; Tang, S. W. Seed-mediated synthesis of floriated Ag nanoplates as surface enhanced Raman scattering substrate for in situ molecular detection. Mater. Res. Bull., 2018, 97, 201–206.

50

Schweitz, K. O.; Schou-Jensen, R. B.; Eskildse, S. S. Ultrasonic pre-treatment for enhanced diamond nucleation. Diam. Relat. Mater. 1996, 5, 206–210.

51

Rodriguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Crystallogr. 2006, 39, 905–909.

File
12274_2021_3473_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2021
Revised: 24 March 2021
Accepted: 25 March 2021
Published: 14 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Science Foundation Award to S.N. (No. CMMI-1911991). It has also benefited from the facilities available through the Notre Dame Molecular Structure Facility (MSF) and the Notre Dame Integrated Imaging Facility (NDIIF).

Return