Journal Home > Volume 15 , Issue 1

High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world. In this work, polyaniline/titanium carbide (MXene) (PANI/Ti3C2Tx) nanohybrid is synthesized through a facile and cost-effective self-assembly of one-dimensional (1D) PANI nanofibers and two-dimensional (2D) Ti3C2Tx nanosheets. PANI/Ti3C2Tx delivers greatly improved specific capacitance, ultrahigh rate capability (67% capacitance retention from 1 to 100 A·g−1) as well as good cycle stability. Electrochemical kinetic analysis reveals that PANI/Ti3C2Tx is featured with surface capacitance-dominated process and has a quasi-reversible kinetics at high scan rates, giving rise to an ultrahigh rate capability. By using PANI/Ti3C2Tx as positive electrode, an 1.8 V aqueous asymmetric supercapacitor (ASC) is successfully assembled, showing a maximum energy density of 50.8 Wh·kg−1 (at 0.9 kW·kg−1) and a power density of 18 kW·kg−1 (at 26 Wh·kg−1). Moreover, an 3.0 V organic ASC is also elaborately fabricated by using PANI/Ti3C2Tx, achieving an ultrahigh energy density of 67.2 Wh·kg−1 (at 1.5 kW·kg−1) and a power density of 30 kW·kg−1 (at 26.8 Wh·kg−1). The present work not only improves fundamental understanding of the structure-property relationship towards ultrahigh rate capability electrode materials, but also provides valuable guideline for the rational design of high-performance energy storage devices with both high energy and power densities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors

Show Author's information Jinhua Zhou1Qi Kang2Shuchi Xu1Xiaoge Li1Cong Liu1Lu Ni1Ningna Chen1Chunliang Lu3Xizhang Wang1Luming Peng1Xuefeng Guo1Weiping Ding1Wenhua Hou1( )
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering Nanjing UniversityNanjing 210023 China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong UniversityShanghai 200240 China
Analytical Testing Center Yangzhou UniversityYangzhou 225009 China

Abstract

High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world. In this work, polyaniline/titanium carbide (MXene) (PANI/Ti3C2Tx) nanohybrid is synthesized through a facile and cost-effective self-assembly of one-dimensional (1D) PANI nanofibers and two-dimensional (2D) Ti3C2Tx nanosheets. PANI/Ti3C2Tx delivers greatly improved specific capacitance, ultrahigh rate capability (67% capacitance retention from 1 to 100 A·g−1) as well as good cycle stability. Electrochemical kinetic analysis reveals that PANI/Ti3C2Tx is featured with surface capacitance-dominated process and has a quasi-reversible kinetics at high scan rates, giving rise to an ultrahigh rate capability. By using PANI/Ti3C2Tx as positive electrode, an 1.8 V aqueous asymmetric supercapacitor (ASC) is successfully assembled, showing a maximum energy density of 50.8 Wh·kg−1 (at 0.9 kW·kg−1) and a power density of 18 kW·kg−1 (at 26 Wh·kg−1). Moreover, an 3.0 V organic ASC is also elaborately fabricated by using PANI/Ti3C2Tx, achieving an ultrahigh energy density of 67.2 Wh·kg−1 (at 1.5 kW·kg−1) and a power density of 30 kW·kg−1 (at 26.8 Wh·kg−1). The present work not only improves fundamental understanding of the structure-property relationship towards ultrahigh rate capability electrode materials, but also provides valuable guideline for the rational design of high-performance energy storage devices with both high energy and power densities.

Keywords: MXene, rate capability, polyaniline, asymmetric supercapacitor, nanohybrid

References(88)

1

Abruña, H. D.; Kiya, Y.; Henderson, J. C. Batteries and electrochemical capacitors. Phys. Today 2008, 61, 43–47.

2

Chen, T.; Xu, Y. D.; Guo, S. Q.; Wei, D. L.; Peng, L. M.; Guo, X. F.; Xue, N. H.; Zhu, Y.; Chen, Z. X.; Zhao, B. et al. Ternary heterostructural Pt/CNx/Ni as a supercatalyst for oxygen reduction. iScience 2019, 11, 388–397.

3

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

4

Xu, L.; Zhao, Y. L.; Owusu, K. A.; Zhuang, Z. C.; Liu, Q.; Wang, Z. Y.; Li, Z. H.; Mai, L. Q. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology. Chem 2018, 4, 1538–1559.

5

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

6

Zhang, G. W.; Yao, H.; Zhang, F.; Gao, Z. T.; Li, Q. J.; Yang, Y. Y.; Lu, X. H. A high over-potential binder-free electrode constructed of prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Res. 2019, 12, 1061–1069.

7

Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.

8

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

9

Xiao, D. W.; Dou, Q. Y.; Zhang, L.; Ma, Y. L.; Shi, S. Q.; Lei, S. L.; Yu, H. Y.; Yan, X. B. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor. Adv. Funct. Mater. 2019, 29, 1904136.

10

Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457–6498.

11

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

12

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

13

Tie, D.; Huang, S. F.; Wang, J.; Ma, J. M.; Zhang, J. J.; Zhao, Y. F. Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Mater. 2019, 21, 22–40.

14

Mao, N.; Wang, H. L.; Sui, Y.; Cui, Y. P.; Pokrzywinski, J.; Shi, J.; Liu, W.; Chen, S. G.; Wang, X.; Mitlin, D. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Res. 2017, 10, 1767–1783.

15

Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12.

16

Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.

17

Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401.

18

Wang, K.; Meng, Q. H.; Zhang, Y. J.; Wei, Z. X.; Miao, M. H. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494–1498.

19

Ge, J.; Cheng, G. H.; Chen, L. W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088.

20

Li, X. W.; Zhang, H.; Wang, G. C.; Jiang, Z. H. A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors. J. Mater. Chem. 2010, 20, 10598–10601.

21

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, M.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

22

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

23
Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. in press, DOI: 10.1007/s12274-021-3297-zhttps://doi.org/10.1007/s12274-021-3297-z
DOI
24

Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.

25

Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.

26

VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.

27

Fu, J. J.; Yun, J. M.; Wu, S. X.; Li, L.; Yu, L. T.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 34212–34221.

28

Li, K.; Wang, X. H.; Li, S.; Urbankowski, P.; Li, J. M.; Xu, Y. X.; Gogotsi, Y. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 2020, 16, 1906851.

29

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

30

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

31

Yang, G. Y.; Shao, S.; Ke, Y. H.; Liu, C. L.; Ren, H. F.; Dong, W. S. PtAu alloy nanoparticles supported on thermally expanded graphene oxide as a catalyst for the selective oxidation of glycerol. RSC Adv. 2015, 5, 37112–37118.

32

Li, X. G.; Guan, B. Y.; Gao, S. Y.; Lou, X. W. A general dual- templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci. 2019, 12, 648–655.

33

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633– 7644.

34

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

35

Xu, S.; Du, C. Y.; Xu, X.; Han, G. K.; Zuo, P. J.; Cheng, X. Q.; Ma, Y. L.; Yin, G. P. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta 2017, 248, 534–540.

36

Mahmood, Q.; Park, S. K.; Kwon, K. D.; Chang, S. J.; Hong, J. Y.; Shen, G. Z.; Jung, Y. M.; Park, T. J.; Khang, S. W.; Kim, W. S. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 2016, 6, 1501115.

37

Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29 4848–4856.

38

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

39

Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

40

Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

41

Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

42

Chen, N. N.; Ni, L.; Zhou, J. H.; Zhu, G. Y.; Kang, Q.; Zhang, Y.; Chen, S. Y.; Zhou, W. X.; Lu, C. L.; Chen, J. et al. Sandwich-like holey graphene/PANI/graphene nanohybrid for ultrahigh-rate supercapacitor. ACS Appl. Energy Mater. 2018, 1, 5189–5197.

43

Naguib, M.; Mashtalir, O.; Lukatskaya, M. R.; Dyatkin, B.; Zhang, C. F.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50, 7420–7423.

44

Wang, Q.; Yao, Q.; Chang, J.; Chen, L. D. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 2012, 22, 17612– 17618.

45

Li, D. J.; Li, Y.; Feng, Y. Y.; Hu, W. P.; Feng, W. Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 2135–2143.

46

Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high- performance supercapacitors. Nano Energy 2017, 38, 368–376.

47

Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.

48

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

49

Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

50

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

51

Yan, J.; Wei, T.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.; Shen, X. D.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045.

52

Lesel, B. K.; Ko, J. S.; Dunn, B.; Tolbert, S. H. Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 2016, 10, 7572–7581.

53

Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355.

54

Shen, J. L.; Yang, C. Y.; Li, X. W.; Wang, G. C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/ graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.

55

Zhao, X.; Chen, C. Y.; Huang, Z. L.; Jin, L.; Zhang, J. X.; Li, Y. Z.; Zhang, L. L.; Zhang, Q. H. Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv. 2015, 5, 66311–66317.

56

Cai, J. J.; Kong, L. B.; Zhang, J.; Luo, Y. C.; Kang, L. A novel polyaniline/ mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chin. Chem. Lett. 2010, 21, 1509–1512.

57

Yu, P. P.; Zhang, Z. M.; Zheng, L. X.; Teng, F.; Hu, L. F.; Fang, X. S. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1601111.

58

Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel- cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.

59

Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Guo, Y. X.; Guan, C.; Liu, J. P.; Fang, G. J. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 2018, 14, 1700979.

60

Li, L. L.; Peng, S. J.; Wu, H. B.; Yu, L.; Madhavi, S.; Lou, X. W. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 2015, 5, 1500753.

61

Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.

62

Yang, C. Q.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R. H.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X. D. et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew. Chem. , Int. Ed. 2017, 56, 3920–3924.

63

Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 2018, 10, 34212-34221.

64

Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 2020, 16, 1906851.

65

Salinas-Torres, D.; Sieben, J. M.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Morallón, E. Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes, Electrochim. Acta 2013, 89, 326-333.

66

Cai, J. J.; Kong, L. B.; Zhang, J.; Luo, Y. C.; Kang, L. A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett. 2010, 21, 1509-1512.

67

Shen, J.; Yang, C.; Li, X.; Wang, G.; High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interaces 2013, 5, 8467-8476.

68

Zhou, S.; Zhang, H.; Zhao, Q.; Wang, X.; Li, J.; Wang, F. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors, Carbon 2013, 52, 440-450.

69

Zhao, X.; Chen, C.; Huang, Z.; Jin, L.; Zhang, J.; Li, Y.; Zhang, L.; Zhang, Q. Green and all-carbon asymmetric supercapacitor based on polyaniline nanotubes and anthraquinone functionalized porous nitrogen-doped carbon nanotubes with high energy storage performance, RSC Adv. 2015, 5, 66311-63633.

70

Yang, C.; Shen, J.; Wang, C.; Fei, H.; Bao, H.; Wang, G. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes, J. Mater. Chem. 2014, 2, 1458-1464.

71

Yu, P.; Zhang, Z.; Zheng, L.; Teng, F.; Hu, L.; Fang, X. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors, Adv. Energy Mater. 2016, 6, 1601111.

72

Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interaces 2012, 4, 2801-2810.

73

Yang, C.; Zhou, M.; Xu, Q. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors, Phys. Chem. Chem. Phys. 2013, 15, 19730.

74

Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Small 2015, 11, 1310-1319.

75

Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 2011, 21, 2366-2375.

76

Yang, J.; Yu, C.; Fan, X.; Liang, S.; Li, S.; Huang, H.; Ling, Z.; Hao, C.; Qiu, J. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors, Energy Environ. Sci. 2016, 9, 1299-1307.

77

Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework, ACS Nano 2015, 9, 6288-6296.

78

Zhao, Y.; Hu, L.; Zhao, S.; Wu, L. Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance, Adv. Funct. Mater. 2016, 26, 4085-4093.

79

Chen, T.; Li, S.; Wen, J.; Gui, P.; Guo, Y.; Guan, C.; Liu, J.; Fang, G. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution, Small 2018, 14, 1700979.

80

Qu, Q.; Zhu, Y.; Gao, X.; Wu, Y. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors, Adv. Energy Mater. 2012, 2, 950-955.

81

Li, L., Peng, S.; Wu, H. B.; Yu, L.; Madhavi, S.; Lou, X. W. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers, Adv. Energy Mater. 2015, 5, 1500753.

82

Tang, W.; Liu, L.; Tian, S.; Li, L.; Yue, Y.; Wu, Y.; Zhu, K. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material, Chem. Commun. 2011, 47, 10058-10060.

83

Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density, Adv. Funct. Mater. 2013, 23, 5074-5083

84

Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor, ACS Appl. Mater. Interfaces 2018, 10, 34212−34221.

85

Li, Y.; Kamdem, P.; Jin, X. -J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors, J. Alloy Compd. 2021, 850, 156608.

86

Jiang, K.; Baburin, I. A.; Han, P.; Yang, C.; Fu, X.; Yao, Y.; Li, J.; Cánovas, E.; Seifert, G.; Chen, J.; Bonn, M.; Feng, X.; Zhuang, X. Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density, Adv. Funct. Mater. 2020, 30, 1908243.

87

Li, H.; Hou, Y.; Wang, F.; Lohe, M. R.; Zhuang, X.; Niu, L.; Feng, X. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene, Adv. Energy Mater. 2017, 7, 1601847.

88

Kurra, N.; Wang, R.; Alshareef, H. N. All conducting polymer electrodes for asymmetric solid-state supercapacitors, J. Mater. Chem. A 2015, 3, 7368-7374.

File
12274_2021_3472_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 January 2021
Revised: 22 March 2021
Accepted: 25 March 2021
Published: 24 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors appreciate the financial support of the National Natural Science Foundation of China (No. 21773116), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, 20130091110010), the Natural Science Foundation of Jiangsu Province (No. BK2011438), the National Science Fund for Talent Training in Basic Science (No. J1103310) and the Modern Analysis Center of Nanjing University and the Program B for Outstanding PhD Candidate of Nanjing University.

.

Return