Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High energy density and enhanced rate capability are highly sought-after for supercapacitors in today's mobile world. In this work, polyaniline/titanium carbide (MXene) (PANI/Ti3C2Tx) nanohybrid is synthesized through a facile and cost-effective self-assembly of one-dimensional (1D) PANI nanofibers and two-dimensional (2D) Ti3C2Tx nanosheets. PANI/Ti3C2Tx delivers greatly improved specific capacitance, ultrahigh rate capability (67% capacitance retention from 1 to 100 A·g−1) as well as good cycle stability. Electrochemical kinetic analysis reveals that PANI/Ti3C2Tx is featured with surface capacitance-dominated process and has a quasi-reversible kinetics at high scan rates, giving rise to an ultrahigh rate capability. By using PANI/Ti3C2Tx as positive electrode, an 1.8 V aqueous asymmetric supercapacitor (ASC) is successfully assembled, showing a maximum energy density of 50.8 Wh·kg−1 (at 0.9 kW·kg−1) and a power density of 18 kW·kg−1 (at 26 Wh·kg−1). Moreover, an 3.0 V organic ASC is also elaborately fabricated by using PANI/Ti3C2Tx, achieving an ultrahigh energy density of 67.2 Wh·kg−1 (at 1.5 kW·kg−1) and a power density of 30 kW·kg−1 (at 26.8 Wh·kg−1). The present work not only improves fundamental understanding of the structure-property relationship towards ultrahigh rate capability electrode materials, but also provides valuable guideline for the rational design of high-performance energy storage devices with both high energy and power densities.
Abruña, H. D.; Kiya, Y.; Henderson, J. C. Batteries and electrochemical capacitors. Phys. Today 2008, 61, 43–47.
Chen, T.; Xu, Y. D.; Guo, S. Q.; Wei, D. L.; Peng, L. M.; Guo, X. F.; Xue, N. H.; Zhu, Y.; Chen, Z. X.; Zhao, B. et al. Ternary heterostructural Pt/CNx/Ni as a supercatalyst for oxygen reduction. iScience 2019, 11, 388–397.
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.
Xu, L.; Zhao, Y. L.; Owusu, K. A.; Zhuang, Z. C.; Liu, Q.; Wang, Z. Y.; Li, Z. H.; Mai, L. Q. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology. Chem 2018, 4, 1538–1559.
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.
Zhang, G. W.; Yao, H.; Zhang, F.; Gao, Z. T.; Li, Q. J.; Yang, Y. Y.; Lu, X. H. A high over-potential binder-free electrode constructed of prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Res. 2019, 12, 1061–1069.
Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.
Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.
Xiao, D. W.; Dou, Q. Y.; Zhang, L.; Ma, Y. L.; Shi, S. Q.; Lei, S. L.; Yu, H. Y.; Yan, X. B. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor. Adv. Funct. Mater. 2019, 29, 1904136.
Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 2018, 118, 6457–6498.
Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.
Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.
Tie, D.; Huang, S. F.; Wang, J.; Ma, J. M.; Zhang, J. J.; Zhao, Y. F. Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Mater. 2019, 21, 22–40.
Mao, N.; Wang, H. L.; Sui, Y.; Cui, Y. P.; Pokrzywinski, J.; Shi, J.; Liu, W.; Chen, S. G.; Wang, X.; Mitlin, D. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading. Nano Res. 2017, 10, 1767–1783.
Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12.
Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987.
Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401.
Wang, K.; Meng, Q. H.; Zhang, Y. J.; Wei, Z. X.; Miao, M. H. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494–1498.
Ge, J.; Cheng, G. H.; Chen, L. W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088.
Li, X. W.; Zhang, H.; Wang, G. C.; Jiang, Z. H. A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors. J. Mater. Chem. 2010, 20, 10598–10601.
Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, M.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.
Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.
VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.
Fu, J. J.; Yun, J. M.; Wu, S. X.; Li, L.; Yu, L. T.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 34212–34221.
Li, K.; Wang, X. H.; Li, S.; Urbankowski, P.; Li, J. M.; Xu, Y. X.; Gogotsi, Y. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 2020, 16, 1906851.
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.
Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Yang, G. Y.; Shao, S.; Ke, Y. H.; Liu, C. L.; Ren, H. F.; Dong, W. S. PtAu alloy nanoparticles supported on thermally expanded graphene oxide as a catalyst for the selective oxidation of glycerol. RSC Adv. 2015, 5, 37112–37118.
Li, X. G.; Guan, B. Y.; Gao, S. Y.; Lou, X. W. A general dual- templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ. Sci. 2019, 12, 648–655.
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633– 7644.
Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.
Xu, S.; Du, C. Y.; Xu, X.; Han, G. K.; Zuo, P. J.; Cheng, X. Q.; Ma, Y. L.; Yin, G. P. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta 2017, 248, 534–540.
Mahmood, Q.; Park, S. K.; Kwon, K. D.; Chang, S. J.; Hong, J. Y.; Shen, G. Z.; Jung, Y. M.; Park, T. J.; Khang, S. W.; Kim, W. S. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 2016, 6, 1501115.
Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S. H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29 4848–4856.
Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.
Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.
Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.
Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.
Chen, N. N.; Ni, L.; Zhou, J. H.; Zhu, G. Y.; Kang, Q.; Zhang, Y.; Chen, S. Y.; Zhou, W. X.; Lu, C. L.; Chen, J. et al. Sandwich-like holey graphene/PANI/graphene nanohybrid for ultrahigh-rate supercapacitor. ACS Appl. Energy Mater. 2018, 1, 5189–5197.
Naguib, M.; Mashtalir, O.; Lukatskaya, M. R.; Dyatkin, B.; Zhang, C. F.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50, 7420–7423.
Wang, Q.; Yao, Q.; Chang, J.; Chen, L. D. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 2012, 22, 17612– 17618.
Li, D. J.; Li, Y.; Feng, Y. Y.; Hu, W. P.; Feng, W. Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 2135–2143.
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high- performance supercapacitors. Nano Energy 2017, 38, 368–376.
Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.
Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.
Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.
Yan, J.; Wei, T.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.; Shen, X. D.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045.
Lesel, B. K.; Ko, J. S.; Dunn, B.; Tolbert, S. H. Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 2016, 10, 7572–7581.
Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355.
Shen, J. L.; Yang, C. Y.; Li, X. W.; Wang, G. C. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/ graphene/carbon nanotube and activated graphene electrodes. ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.
Zhao, X.; Chen, C. Y.; Huang, Z. L.; Jin, L.; Zhang, J. X.; Li, Y. Z.; Zhang, L. L.; Zhang, Q. H. Rational design of polyaniline/MnO2/carbon cloth ternary hybrids as electrodes for supercapacitors. RSC Adv. 2015, 5, 66311–66317.
Cai, J. J.; Kong, L. B.; Zhang, J.; Luo, Y. C.; Kang, L. A novel polyaniline/ mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chin. Chem. Lett. 2010, 21, 1509–1512.
Yu, P. P.; Zhang, Z. M.; Zheng, L. X.; Teng, F.; Hu, L. F.; Fang, X. S. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater. 2016, 6, 1601111.
Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel- cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.
Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Guo, Y. X.; Guan, C.; Liu, J. P.; Fang, G. J. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 2018, 14, 1700979.
Li, L. L.; Peng, S. J.; Wu, H. B.; Yu, L.; Madhavi, S.; Lou, X. W. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv. Energy Mater. 2015, 5, 1500753.
Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.
Yang, C. Q.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R. H.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X. D. et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew. Chem. , Int. Ed. 2017, 56, 3920–3924.
Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 2018, 10, 34212-34221.
Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An ultrafast conducting polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 2020, 16, 1906851.
Salinas-Torres, D.; Sieben, J. M.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Morallón, E. Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre-PANI electrodes, Electrochim. Acta 2013, 89, 326-333.
Cai, J. J.; Kong, L. B.; Zhang, J.; Luo, Y. C.; Kang, L. A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chinese Chem. Lett. 2010, 21, 1509-1512.
Shen, J.; Yang, C.; Li, X.; Wang, G.; High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interaces 2013, 5, 8467-8476.
Zhou, S.; Zhang, H.; Zhao, Q.; Wang, X.; Li, J.; Wang, F. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors, Carbon 2013, 52, 440-450.
Zhao, X.; Chen, C.; Huang, Z.; Jin, L.; Zhang, J.; Li, Y.; Zhang, L.; Zhang, Q. Green and all-carbon asymmetric supercapacitor based on polyaniline nanotubes and anthraquinone functionalized porous nitrogen-doped carbon nanotubes with high energy storage performance, RSC Adv. 2015, 5, 66311-63633.
Yang, C.; Shen, J.; Wang, C.; Fei, H.; Bao, H.; Wang, G. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes, J. Mater. Chem. 2014, 2, 1458-1464.
Yu, P.; Zhang, Z.; Zheng, L.; Teng, F.; Hu, L.; Fang, X. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors, Adv. Energy Mater. 2016, 6, 1601111.
Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interaces 2012, 4, 2801-2810.
Yang, C.; Zhou, M.; Xu, Q. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors, Phys. Chem. Chem. Phys. 2013, 15, 19730.
Zhao, Y.; Ran, W.; He, J.; Huang, Y.; Liu, Z.; Liu, W.; Tang, Y.; Zhang, L.; Gao, D.; Gao, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Small 2015, 11, 1310-1319.
Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 2011, 21, 2366-2375.
Yang, J.; Yu, C.; Fan, X.; Liang, S.; Li, S.; Huang, H.; Ling, Z.; Hao, C.; Qiu, J. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors, Energy Environ. Sci. 2016, 9, 1299-1307.
Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework, ACS Nano 2015, 9, 6288-6296.
Zhao, Y.; Hu, L.; Zhao, S.; Wu, L. Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance, Adv. Funct. Mater. 2016, 26, 4085-4093.
Chen, T.; Li, S.; Wen, J.; Gui, P.; Guo, Y.; Guan, C.; Liu, J.; Fang, G. Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution, Small 2018, 14, 1700979.
Qu, Q.; Zhu, Y.; Gao, X.; Wu, Y. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors, Adv. Energy Mater. 2012, 2, 950-955.
Li, L., Peng, S.; Wu, H. B.; Yu, L.; Madhavi, S.; Lou, X. W. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers, Adv. Energy Mater. 2015, 5, 1500753.
Tang, W.; Liu, L.; Tian, S.; Li, L.; Yue, Y.; Wu, Y.; Zhu, K. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material, Chem. Commun. 2011, 47, 10058-10060.
Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density, Adv. Funct. Mater. 2013, 23, 5074-5083
Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CTx@Polyaniline composite for high-performance pouch-type asymmetric supercapacitor, ACS Appl. Mater. Interfaces 2018, 10, 34212−34221.
Li, Y.; Kamdem, P.; Jin, X. -J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors, J. Alloy Compd. 2021, 850, 156608.
Jiang, K.; Baburin, I. A.; Han, P.; Yang, C.; Fu, X.; Yao, Y.; Li, J.; Cánovas, E.; Seifert, G.; Chen, J.; Bonn, M.; Feng, X.; Zhuang, X. Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density, Adv. Funct. Mater. 2020, 30, 1908243.
Li, H.; Hou, Y.; Wang, F.; Lohe, M. R.; Zhuang, X.; Niu, L.; Feng, X. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene, Adv. Energy Mater. 2017, 7, 1601847.
Kurra, N.; Wang, R.; Alshareef, H. N. All conducting polymer electrodes for asymmetric solid-state supercapacitors, J. Mater. Chem. A 2015, 3, 7368-7374.