Journal Home > Volume 15 , issue 1

Surface strain engineering is considered as an effective strategy to promote the electrocatalytic properties of noble metal nanocrystals. Herein, we construct a dual-phase palladium-copper (DP-PdCu) bimetallic electrocatalyst with remarkable biaxial strain via a one-pot wet-chemical approach for formic acid oxidation. The biaxial strain originates from the lattice mismatch between the disordered face-centered cubic (FCC) phase and ordered body-centered cubic (BCC) phase in each of DP-PdCu nanoparticles. The proportion of FCC and BCC phases and size of PdCu nanoparticles are dependent on the addition amount of capping agent, cetyltrimethylammonium bromide (CTAB). Density functional theory calculations reveal the downshift of d-band center of Pd atoms due to the interfacial strain, which weakens the adsorption strength of undesired intermediates. These merit the DP-PdCu catalyst with superior mass activity of 0.55 A·mgPd−1 and specific activity of 1.91 mA·cmPd−2 toward formic acid oxidation, outperforming the single FCC/BCC PdCu and commercial Pd/C catalysts. This will provide new insights into the structure design of high-performance electrocatalysts via strain engineering.

File
12274_2021_3471_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 January 2021
Revised: 07 March 2021
Accepted: 24 March 2021
Published: 16 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0101201), the National Natural Science Foundation of China (Nos. 21822506 and 51761165025) and the 111 project of B12015.

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return