Journal Home > Volume 15 , issue 1

Heterostructures composed of two-dimensional (2D) nanosheets and zero-dimensional (0D) nanoparticles (NPs) have attracted increasing attention because of the synergy arising from the coupling interactions between the two mixed-dimensional components. Despite recent advances, it remains a challenge to fabricate 2D/0D heterostructures with clean and accessible surfaces, which is highly desirable for the diversity of catalytic, sensing, and energy storage applications. Herein, we report a generalized methodology that enables the facile assembly of sandwich-like 0D/2D/0D heterostructures with facilitated mass-transport channels and exposed surface active sites. A ligand-exchange strategy with HBF4 is employed to strip off the surface-coating ligands of colloidal NPs, rendering them positively charged and dispersible in polar solvents. This allows subsequent electrostatic assembly of NPs with oppositely charged 2D nanosheets to afford sandwich-like 0D/2D/0D heterostructures. The barely covered surfaces and the advantageous architectures of such sandwich-like 0D/2D/0D heterostructures induce the desired synergistic effect, making them particularly suitable for electrochemical energy storage and conversion. We demonstrate this by employing MXene/NiFe2O4 and MXene/Fe3O4 heterostructures for high-performance electrocatalytic oxygen evolution and supercapacitors, respectively.


menu
Abstract
Full text
Outline
References
Electronic supplementary material
About this article
Generalized assembly of sandwich-like 0D/2D/0D heterostructures with highly exposed surfaces toward superior electrochemical performances
Show Author's information Shuqing Xue1,§Guanhong Wu2,§Mingzhong Li2Zihan Liu2Yuwei Deng2Wenqian Han2Xuanyu Lv1Siyu Wan2Xiangyun Xi1Dong Yang1( )Angang Dong2( )
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan UniversityShanghai 200438 China
Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry, Fudan UniversityShanghai 200438 China

§ Shuqing Xue and Guanhong Wu contributed equally to this work.

Abstract

Heterostructures composed of two-dimensional (2D) nanosheets and zero-dimensional (0D) nanoparticles (NPs) have attracted increasing attention because of the synergy arising from the coupling interactions between the two mixed-dimensional components. Despite recent advances, it remains a challenge to fabricate 2D/0D heterostructures with clean and accessible surfaces, which is highly desirable for the diversity of catalytic, sensing, and energy storage applications. Herein, we report a generalized methodology that enables the facile assembly of sandwich-like 0D/2D/0D heterostructures with facilitated mass-transport channels and exposed surface active sites. A ligand-exchange strategy with HBF4 is employed to strip off the surface-coating ligands of colloidal NPs, rendering them positively charged and dispersible in polar solvents. This allows subsequent electrostatic assembly of NPs with oppositely charged 2D nanosheets to afford sandwich-like 0D/2D/0D heterostructures. The barely covered surfaces and the advantageous architectures of such sandwich-like 0D/2D/0D heterostructures induce the desired synergistic effect, making them particularly suitable for electrochemical energy storage and conversion. We demonstrate this by employing MXene/NiFe2O4 and MXene/Fe3O4 heterostructures for high-performance electrocatalytic oxygen evolution and supercapacitors, respectively.

Keywords: assembly, heterostructures, ligand-exchange, MXene, oxygen evolution, supercapacitor
Received: 26 February 2021 Revised: 24 March 2021 Accepted: 24 March 2021 Published: 26 April 2021 Issue date: January 2022
References(80)
1

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

2

Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038.

3

Borges, J.; Mano, J. F. Molecular interactions driving the layer-by- layer assembly of multilayers. Chem. Rev. 2014, 114, 8883–8942.

4

Vogel, N.; Retsch, M.; Fustin, C. A.; Del Campo, A.; Jonas, U. Advances in colloidal assembly: The design of structure and hierarchy in two and three dimensions. Chem. Rev. 2015, 115, 6265–6311.

5

Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G. H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

6

Min, Y.; Im E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 2019, 12, 1750–1769.

7

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

8

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

9

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

10

Talapin, D. V.; Murray, C. B. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 2005, 310, 86–89.

11

Law, M.; Luther, J. M.; Song, Q.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 2008, 130, 5974–5985.

12

Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.

13

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

14

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

15

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

16

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

17

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–489.

18

Yu, Q. M.; Luo, Y. T.; Mahmood, A.; Liu, B. L.; Cheng, H. M. Engineering two-dimensional materials and their heterostructures as high-performance electrocatalysts. Electrochem. Energy Rev. 2019, 2, 373–394.

19

Wang, J.; Tang, J.; Ding, B.; Malgras, V.; Chang, Z.; Hao, X. D.; Wang, Y.; Dou, H.; Zhang, X. G.; Yamauchi, Y. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat. Commun. 2017, 8, 15717.

20

Simon, P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 2017, 11, 2393–2396.

21

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

22

Peng, L. L.; Zhu, Y.; Li, H. S.; Yu, G. H. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices. Small 2016, 12, 6183–6199.

23

Shifa, T. A.; Wang, F. M.; Liu, Y.; He, J. Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv. Mater. 2019, 31, 1804828.

24

Xi, Q.; Chen, X.; Evans, D. G.; Yang, W. S. Gold nanoparticle- embedded porous graphene thin films fabricated via layer-by-layer self-assembly and subsequent thermal annealing for electrochemical sensing. Langmuir 2012, 28, 9885–9892.

25

Kim, M. S.; Lim, E.; Kim, S.; Jo, C.; Chun, J.; Lee, J. General synthesis of N-doped macroporous graphene-encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv. Funct. Mater. 2017, 27, 1603921.

26

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

27

Wang, Y. S.; Li, Y. Y.; Qiu, Z. P.; Wu, X. Z.; Zhou, P. F.; Zhou, T.; Zhao, J. P.; Miao, Z. C.; Zhou, J.; Zhuo, S. P. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 11189–11197.

28

Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334.

29

Wu, D. Q.; Zhang, F.; Liang, H. W.; Feng, X. L. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 41, 6160–6177.

30

Fang, Y. X.; Guo, S. J.; Zhu, C. Z.; Zhai, Y. M.; Wang, E. K. Self- assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 2010, 26, 11277–11282.

31

Lv, Z. Z.; Yang, X.; Wang, E. K. Highly concentrated polycations- functionalized graphenenanosheets with excellent solubility and stability, and its fast, facile and controllable assembly of multiple nanoparticles. Nanoscale 2013, 5, 663–670.

32

Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006.

33

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

34

Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2020, https://doi.org/10.1016/j.pmatsci.2020.100757.

35

Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

36

Forsberg, V.; Zhang, R. Y.; Bäckström, J.; Dahlström, C.; Andres, B.; Norgren, M.; Andersson, M.; Hummelgård, M.; Olin, H. Exfoliated MoS2 in water without additives. PLoS One 2016, 11, e0154522.

37

Xiong, P.; Zhang, X. Y.; Zhang, F.; Yi, D.; Zhang, J. Q.; Sun, B.; Tian, H.; Shanmukaraj, D.; Rojo, T.; Armand, M. et al. Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage. ACS Nano 2018, 12, 12337–12346.

38

Xiong, P.; Ma, R. Z.; Sakai, N.; Sasaki, T. Genuine unilamellar metal oxide nanosheets confined in a superlattice-like structure for superior energy storage. ACS Nano 2018, 12, 1768–1777.

39

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two- dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

40

Ying, G. B.; Dillon, A. D.; Fafarman, A. T.; Barsoum, M. W. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater. Res. Lett. 2017, 5, 391–398.

41

Zhou, Y. Y.; Jiang, K.; Zhao, Z. G.; Li, Q. W.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Giant two-dimensional titania sheets for constructing a flexible fiber sodium-ion battery with long-term cycling stability. Energy Storage Mater. 2020, 24, 504–511.

42

Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J. Room-temperature synthesis of manganese oxide monosheets. J. Am. Chem. Soc. 2008, 130, 15938–15943.

43

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

44

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

45

Wang, D. Y.; Kang, Y. J.; Doan-Nguyen, V.; Chen, J.; Küngas, R.; Wieder, N. L.; Bakhmutsky, K.; Gorte, R. J.; Murray, C. B. Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew. Chem., Int. Ed. 2011, 123, 4470–4473.

46

Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

47

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

48

Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.

49

Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.

50

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

51

Zhang, J. T.; Zhao, X. S. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem 2012, 5, 818–841.

52

Ardizzone, S.; Fregonara, G.; Trasatti, S. "Inner" and "outer" active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.

53

Ma, Y.; Dai, X.; Liu, M.; Yong, J.; Qiao, H.; Jin, A.; Li, Z.; Huang, X.; Wang, H.; Zhang, X. Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS Appl. Mater. Inter. 2016, 8, 34396-34404.

54

Lim, D.; Kong, H.; Kim, N.; Lim, C.; Ahn, W. S.; Baeck, S. H. Oxygen-Deficient NiFe2O4 Spinel Nanoparticles as an Enhanced Electrocatalyst for the Oxygen Evolution Reaction. ChemNanoMat 2019, 5, 1296-1302.

55

Bao, J.; Zhang, X.; Fan, B.; Zhang, J.; Zhou, M.; Yang, W.; Hu, X.; Wang, H.; Pan, B.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. 2015, 127, 7507-7512.

56

Zhang, Z.; Zhang, J.; Wang, T.; Li, Z.; Yang, G.; Bian, H.; Li, J.; Gao, D. Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning. RSC Adv. 2018, 8, 5338-5343.

57

Huang, Y.; Yang, W.; Yu, Y.; Hao, S. Ordered mesoporous spinel CoFe2O4 as efficient electrocatalyst for the oxygen evolution reaction. J. Electroanal. Chem. 2019, 840, 409-414.

58

Mahala, C.; Sharma, M. D.; Basu, M. 2D nanostructures of CoFe2O4 and NiFe2O4: efficient oxygen evolution catalyst. Electrochim. Acta 2018, 273, 462-473.

59

Li, Z.; Yu, X. -Y.; Paik, U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. J. Power Sources 2016, 310, 41-46.

60

Lu, Y.; Fan, D.; Chen, Z.; Xiao, W.; Cao, C.; Yang, X. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460-466.

61

Wang, C.; Zhu, X. -D.; Mao, Y. -C.; Wang, F.; Gao, X. -T.; Qiu, S. -Y.; Le, S. -R.; Sun, K. -N. MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities. Chem. Commun. 2019, 55, 1237-1240.

62

Leng, M.; Huang, X.; Xiao, W.; Ding, J.; Liu, B.; Du, Y.; Xue, J. Enhanced oxygen evolution reaction by Co-OC bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy 2017, 33, 445-452.

63

Chen, S.; Zhao, Y.; Sun, B.; Ao, Z.; Xie, X.; Wei, Y.; Wang, G. Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries and oxygen evolution reactions. ACS Appl. Mater. Inter. 2015, 7, 3306-3313.

64

Tang, Y.; Fang, X.; Zhang, X.; Fernandes, G.; Yan, Y.; Yan, D.; Xiang, X.; He, J. Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl. Mater. Inter. 2017, 9, 36762-36771.

65

Dong, D.; Liu, Y.; Li, J. Co3O4 hollow polyhedrons as bifunctional electrocatalysts for reduction and evolution reactions of oxygen. Part. Part. Syst. Char. 2016, 33, 887-895.

66

Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M. Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS nano 2017, 11, 5800-5807.

67

Wen, Y.; Wei, Z.; Ma, C.; Xing, X.; Li, Z.; Luo, D. MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution. Nanomaterials 2019, 9, 775.

68

Kulal, P. M.; Dubal, D. P.; Lokhande, C. D.; Fulari, V. J. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloy. Compd. 2011, 509, 2567-2571.

69

Sethuraman, B.; Purushothaman, K. K.; Muralidharan, G. Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Adv. 2014, 4, 4631-4637.

70

Wang, D.; Li, Y.; Wang, Q.; Wang, T. Nanostructured Fe2O3-graphene composite as a novel electrode material for supercapacitors. J. Solid State Electr. 2012, 16, 2095-2102.

71

Mitchell, E.; Gupta, R. K.; Mensah-Darkwa, K.; Kumar, D.; Ramasamy, K.; Gupta, B. K.; Kahol, P. Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J. Chem. 2014, 38, 4344-4350.

72

Wang, G.; Xu, H.; Lu, L.; Zhao, H. Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. J. Energy Chem. 2014, 23, 809-815.

73

Meng, W.; Chen, W.; Zhao, L.; Huang, Y.; Zhu, M.; Huang, Y.; Fu, Y.; Geng, F.; Yu, J.; Chen, X. Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 2014, 8, 133-140.

74

Guan, D.; Gao, Z.; Yang, W.; Wang, J.; Yuan, Y.; Wang, B.; Zhang, M.; Liu, L. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Mater. Sci. Eng. B 2013, 178, 736-743.

75

Fu, C.; Mahadevegowda, A.; Grant, P. S. Fe3O4/carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. J. Mater. Chem. A 2015, 3, 14245-14253.

76

Wang, L.; Yu, J.; Dong, X.; Li, X.; Xie, Y.; Chen, S.; Li, P.; Hou, H.; Song, Y. Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain. Chem. Eng. 2016, 4, 1531-1537.

77

Wang, Q.; Jiao, L.; Du, H.; Wang, Y.; Yuan, H. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 2014, 245, 101-106.

78

Li, L.; Gao, P.; Gai, S.; He, F.; Chen, Y.; Zhang, M.; Yang, P. Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim. Acta 2016, 190, 566-573.

79

Yan, F.; Ding, J.; Liu, Y.; Wang, Z.; Cai, Q.; Zhang, J. Fabrication of magnetic irregular hexagonal-Fe3O4 sheets/reduced graphene oxide composite for supercapacitors. Synthetic Met. 2015, 209, 473-479.

80

Arun, T.; Prabakaran, K.; Udayabhaskar, R.; Mangalaraja, R.; Akbari-Fakhrabadi, A. Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl. Surf. Sci. 2019, 485, 147-157.

File
12274_2021_3468_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 February 2021
Revised: 24 March 2021
Accepted: 24 March 2021
Published: 26 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 22025501, 21872038, 21733003, 51773042, and 51973040), and the National Key R & D Program of China (Nos. 2020YFB1505803 and 2017YFA0207303), and Foshan Science and Technology Innovation Program (No. 2017IT100121).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return