Journal Home > Volume 15 , Issue 1

The recent development of Aurum (Au) introduced Platinum (Pt) based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions, due to its stability and anti-poisoning features. Therefore, the performance of PtAu based catalysts with different elements, atomic ratio, and morphology was studied in methanol solution to further improve its electrocatalytic activity. Furthermore, the effects of Au have aroused the researchers' attention in Pt-based nanocatalysts. In this review, we summarize the controllable synthesis, mechanism, and catalytic performance of Au introduced Pt-based electrocatalysts such as PtAu core-shell nanostructures, PtAu dendrite, PtAu nanowires, self-supporting Au@Pt NPs, and Au@Pt star-like nanocrystals for the methanol oxidation reaction. Finally, the challenges and research directions for the future development of PtAu based catalysts are provided.


menu
Abstract
Full text
Outline
About this article

Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction

Show Author's information Wenhua Lou1,2Asad Ali1,3Pei Kang Shen1( )
Collaborative Innovation Center of Sustainable Energy MaterialsGuangxi Key Laboratory of Electrochemical Energy Materials, Guangxi UniversityNanning530004China
School of Physical Science and TechnologyGuangxi UniversityNanning530004China
School of Chemistry & Chemical EngineeringGuangxi UniversityNanning530004China

Abstract

The recent development of Aurum (Au) introduced Platinum (Pt) based nanomaterials is of great significance to direct methanol fuel cell as electrocatalysts for anode reactions, due to its stability and anti-poisoning features. Therefore, the performance of PtAu based catalysts with different elements, atomic ratio, and morphology was studied in methanol solution to further improve its electrocatalytic activity. Furthermore, the effects of Au have aroused the researchers' attention in Pt-based nanocatalysts. In this review, we summarize the controllable synthesis, mechanism, and catalytic performance of Au introduced Pt-based electrocatalysts such as PtAu core-shell nanostructures, PtAu dendrite, PtAu nanowires, self-supporting Au@Pt NPs, and Au@Pt star-like nanocrystals for the methanol oxidation reaction. Finally, the challenges and research directions for the future development of PtAu based catalysts are provided.

Keywords: electrocatalysis, methanol oxidation reaction (MOR), direct methanol fuel cell (DMFC), PtAu based catalysts, anode catalysts

References(156)

1

Tian, X. L.; Xu, Y. Y.; Zhang, W. Y.; Wu, T.; Xia, B. Y.; Wang, X. Unsupported platinum-based electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2017, 2, 2035-2043.

2

Panwar, N. L.; Kaushik, S. C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sust. Energ. Rev. 2011, 15, 1513-1524.

3

Lei, Z. D.; Xue, Y. C.; Chen, W. Q.; Qiu, W. H.; Zhang, Y.; Horike, S.; Tang, L. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 2018, 8, 1801587.

4

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

5

Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y. H.; Nam, D. H.; Chen, B.; Wicks, J.; Zhuang, T. T.; Li, F. W.; Sinton, D. et al. Chloride- mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 2020, 368, 1228-1233.

6

Lemmon, J. P. Energy: Reimagine fuel cells. Nature 2015, 525, 447-449.

7

Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass- derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.

8

Chen, G. R.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Yuan, Q. Hollow PtCu octahedral nanoalloys: Efficient bifunctional electrocatalysts towards oxygen reduction reaction and methanol oxidation reaction by regulating near-surface composition. J. Colloid Interface Sci. 2020, 562, 244-251.

9

Xu, X. L.; Xia, Z. X.; Zhang, X. M.; Sun, R. L.; Sun, X. J.; Li, H. Q.; Wu, C. C.; Wang, J. H.; Wang, S. L.; Sun, G. Q. Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells. Appl. Catal. B Environ. 2019, 259, 118042.

10

Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350-363.

11

Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

12

Zhao, W. Y.; Ni, B.; Yuan, Q.; He, P. L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.

13

Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160-5165.

14

Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189-22217.

15

Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058-2068.

16

Abdullah, N.; Kamarudin, S. K. Titanium dioxide in fuel cell technology: An overview. J. Power Sources 2015, 278, 109-118.

17

Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. Acs Catal. 2015, 5, 1468-1474.

18

Shi, Y.; Fang, Y.; Zhang, G. L.; Wang, X. S.; Cui, P.; Wang, Q.; Wang, Y. X. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir. J. Mater. Chem. A 2020, 8, 3795-3802.

19

Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Wang, Y. X. Nanosized Mo-doped CeO2 enhances the electrocatalytic properties of the Pt anode catalyst in direct methanol fuel cells. J. Mater. Chem. A 2017, 5, 1481-1487.

20

Yang, Z. Z.; Shi, Y.; Wang, X. S.; Zhang, G. L.; Cui, P. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell. J. Power Sources 2019, 431, 125-134.

21

Yan, Z. X.; He, G. Q.; Shen, P. K.; Luo, Z. B.; Xie, J. M.; Chen, M. MoC-graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4014-4022.

22

Wang, Z.; Hu, S. Q.; Ali, A.; Chen, H. L.; Shen, P. K. Facile one-pot synthesis of a PtRh alloy decorated on Ag nanocubes as a trimetallic core-shell catalyst for boosting methanol oxidation reaction. ACS Appl. Energy Mater. 2021, 4, 1085-1092.

23

Zhao, F. L.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Zhou, Z. Y. Realizing a CO-free pathway and enhanced durability in highly dispersed Cu-doped PtBi nanoalloys towards methanol full electrooxidation. J. Mater. Chem. A 2020, 8, 11564-11572.

24

Zhang, Y. P.; Gao, F.; Song, T. X.; Wang, C.; Chen, C. Y.; Du, Y. K. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. Nanoscale 2019, 11, 15561-15566.

25

Li, Z. J.; Jiang, X.; Wang, X. R.; Hu, J. R.; Liu, Y. Y.; Fu, G. T.; Tang, Y. W. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B Environ. 2020, 277, 119135.

26

Chen, G. J.; Shan, H. Q.; Li, Y.; Bao, H. W.; Hu, T. W.; Zhang, L.; Liu, S.; Ma, F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks. J. Mater. Chem. A 2020, 8, 10337-10345.

27

Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088-3097.

28

Xu, L. L.; Cui, Q. Q.; Zhang, H.; Jiao, A. X.; Tian, Y.; Li, S.; Li, H. S.; Chen, M.; Chen, F. Ultra-clean PtPd nanoflowers loaded on go supports with enhanced low-temperature electrocatalytic activity for fuel cells in harsh environment. Appl. Surf. Sci. 2020, 511, 145603.

29

Radhakrishnan, T.; Sandhyarani, N. Pt-Ag nanostructured 3D architectures: A tunable catalyst for methanol oxidation reaction. Electrochim. Acta 2019, 298, 835-843.

30

Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277-283.

31

Li, C. L.; Tan, H. B.; Lin, J. J.; Luo, X. L.; Wang, S. P.; You, J.; Kang, Y. M.; Bando, Y.; Yamauchi, Y.; Kim, J. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018, 21, 91-105.

32

Zhu, X. X.; Huang, L.; Wei, M.; Tsiakaras, P.; Shen, P. K. Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B Environ. 2021, 281, 119460.

33

Du, H. Y.; Wang, K.; Tsiakaras, P.; Shen, P. K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Appl. Catal. B Environ. 2019, 258, 117951.

34

Zhang, W. Q.; Shen, Y. L.; Pang, F. J.; Quek, D.; Niu, W. X.; Wang, W. J.; Chen, P. Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Appl. Mater. Interfaces 2020, 12, 41613-41619.

35

Sun, S. M.; An, Q.; Watanabe, M.; Cheng, J. F.; Kim, H. H.; Akbay, T.; Takagaki, A.; Ishihara, T. Highly correlation of CO2 reduction selectivity and surface electron accumulation: A case study of Au-MoS2 and Ag-MoS2 catalyst. Appl. Catal. B Environ. 2020, 271, 118931.

36

Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020, 120, 464-525.

37

Xu, J. W.; Liu, N.; Wu, D.; Gao, Z. D.; Song, Y. Y.; Schmuki, P. Upconversion nanoparticle-assisted payload delivery from TiO2 under near-infrared light irradiation for bacterial inactivation. ACS Nano 2020, 14, 337-346.

38

Zhu, B.; Zhang, L. Y.; Li, M.; Yan, Y.; Zhang, X. M.; Zhu, Y. M. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chem. Eng. J. 2020, 381, 122599.

39

Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399-1403.

40

Jeong, H.; Kim, J. Methanol dehydrogenation reaction at Au@Pt catalysts: Insight into the methanol electrooxidation. Electrochim. Acta 2018, 283, 11-17.

41

Xu, G. D. A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction. Ionics 2018, 24, 3915-3921.

42

Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575-1583.

43

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

44

Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.

45

Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188-1194.

46

Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. Electrochemically seed-mediated synthesis of sub-10 nm tetrahexahedral Pt nanocrystals supported on graphene with improved catalytic performance. J. Am. Chem. Soc. 2016, 138, 5753-5756.

47

Zhao, F. L.; Yuan, Q.; Luo, B.; Li, C. Z.; Yang, F.; Yang, X. T.; Zhou, Z. Y. Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation. Sci. China Mater. 2019, 62, 1877-1887.

48

Lan, J.; Wang, K.; Yuan, Q.; Wang, X. Composition-controllable synthesis of defect-rich PtPdCu nanoalloys with hollow cavities as superior electrocatalysts for alcohol oxidation. Mater. Chem. Front. 2017, 1, 1217-1222.

49

Wang, J. P.; Thomas, D. F.; Chen, A. C. Direct growth of novel alloyed PtAu nanodendrites. Chem. Commun. 2008, 5010-5012.

50

Seselj, N.; Engelbrekt, C.; Ding, Y.; Hjuler, H. A.; Ulstrup, J.; Zhang, J. D. Tailored electron transfer pathways in Aucore/Ptshell-graphene nanocatalysts for fuel cells. Adv. Energy Mater. 2018, 8, 1702609.

51

Bhunia, K.; Khilari, S.; Pradhan, D. Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction. Dalton Trans. 2017, 46, 15558-15566.

52

Bian, T.; Sun, B.; Luo, S.; Huang, L.; Su, S.; Meng, C. F.; Su, S. C.; Yuan, A. H.; Zhang, H. Seed-mediated synthesis of Au@PtCu nanostars with rich twin defects as efficient and stable electrocatalysts for methanol oxidation reaction. RSC Adv. 2019, 9, 35887-35894.

53

Xie, Y. X.; Li, C.; Razek, S. A.; Fang, J. Y.; Dimitrov, N. Synthesis of nanoporous Au-Cu-Pt alloy as a superior catalyst for the methanol oxidation reaction. ChemElectroChem 2020, 7, 569-580.

54

Lin, Z. C.; Sheng, Y.; Li, J.; Rui, Z. Y.; Liu, Y. D.; Liu, J. G.; Zou, Z. G. Ternary heterogeneous Pt-Ni-Au nanowires with enhanced activity and stability for PEMFCs. Chem. Commun. 2020, 56, 4276-4279.

55

Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65-71.

56

Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core-shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015-18021.

57

Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946-11953.

58

Bhalothia, D.; Fan, Y. J.; Lai, Y. C.; Yang, Y. T.; Yang, Y. W.; Lee, C. H.; Chen, T. Y. Conformational effects of Pt-shells on nanostructures and corresponding oxygen reduction reaction activity of Au-cluster- decorated NiOx@Pt nanocatalysts. Nanomaterials 2019, 9, 1003.

59

Wang, X.; Zhang, L. J.; Gong, H. Y.; Zhu, Y. L.; Zhao, H. H.; Fu, Y. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions. Electrochim. Acta 2016, 212, 277-285.

60

Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au-Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109-6122.

61

Chen, H. M.; Peng, H. C.; Liu, R. S.; Hu, S. F.; Jang, L. Y. Local structural characterization of Au/Pt bimetallic nanoparticles. Chem. Phys. Lett. 2006, 420, 484-488.

62

Chen, D.; Luo, L. M.; Zhang, R. H.; Hu, Q. Y.; Yang, C. Y.; Zhou, X. W.; Chen, S. N.; Dai, Z. X. Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation. J. Electroanal. Chem. 2018, 812, 90-95.

63

Liao, M. Y.; Li, W. P.; Xi, X. P.; Luo, C. L.; Gui, S. L.; Jiang, C.; Mai, Z. H.; Chen, B. H. Highly active Aucore@Ptcluster catalyst for formic acid electrooxidation. J. Electroanal. Chem. 2017, 791, 124-130.

64

Patra, S.; Das, J.; Yang, H. Selective deposition of Pt on Au nanoparticles using hydrogen presorbed into Au nanoparticles during NaBH4 treatment. Electrochim. Acta 2009, 54, 3441-3445.

65

Ma, L.; Ding, S. J.; Yang, D. J. Preparation of bimetallic Au/Pt nanotriangles with tunable plasmonic properties and improved photocatalytic activity. Dalton Trans. 2018, 47, 16969-16976.

66

Zhao, Z. L.; Zhang, L. Y.; Bao, S. J.; Li, C. M. One-pot synthesis of small and uniform Au@PtCu core-alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells. Appl. Catal. B Environ. 2015, 174-175, 361-366.

67

Kuang, W. T.; Jiang, Z. L.; Li, H.; Zhang, J. X.; Zhou, L. N.; Li, Y. J. Self-supported composition-tunable Au/PtPd core/shell tri-metallic nanowires for boosting alcohol electrooxidation and suzuki coupling. ChemElectroChem 2018, 5, 3901-3905.

68

Ercolano, G.; Farina, F.; Stievano, L.; Jones, D. J.; Rozière, J.; Cavaliere, S. Preparation of Ni@Pt core@shell conformal nanofibre oxygen reduction electrocatalysts via microwave-assisted galvanic displacement. Catal. Sci. Technol. 2019, 9, 6920-6928.

69

Carraro, C.; Maboudian, R.; Magagnin, L. Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf. Sci. Rep. 2007, 62, 499-525.

70

Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783-9795.

71

Liu, M. M.; Lu, Y. Z.; Chen, W. Pdag nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater. 2013, 23, 1289-1296.

72

Gowthaman, N. S. K.; Sinduja, B.; Shankar, S.; John, S. A. Displacement reduction routed Au-Pt bimetallic nanoparticles: A highly durable electrocatalyst for methanol oxidation and oxygen reduction. Sustain. Energy Fuels 2018, 2, 1588-1599.

73

Higuchi, E.; Hayashi, K.; Chiku, M.; Inoue, H. Simple preparation of Au nanoparticles and their application to Au core/Pt shell catalysts for oxygen reduction reaction. Electrocatalysis 2012, 3, 274-283.

74

Londono-Calderon, A.; Campos-Roldan, C. A.; González-Huerta, R. G.; Hernandez-Pichardo, M. L.; del Angel, P.; Yacaman, M. J. Influence of the architecture of Au-Ag-Pt nanoparticles on the electrocatalytic activity for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 30208-30215.

75

Sui, N.; Yue, R. P.; Wang, Y. K.; Bai, Q.; An, R. H.; Xiao, H. L.; Wang, L. N.; Liu, M. H.; Yu, W. W. Boosting methanol oxidation reaction with Au@AgPt yolk-shell nanoparticles. J. Alloys Compd. 2019, 790, 792-798.

76

Zhang, K.; Xu, H.; Yan, B.; Wang, J.; Du, Y. K.; Liu, Q. Y. Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim. Acta 2018, 268, 383-391.

77

Sohn, Y.; Jung, N.; Lee, M. J.; Lee, S.; Nahm, K. S.; Kim, P.; Yoo, S. J. Preparation of porous PtAuCu@Pt core-shell catalyst for application to oxygen reduction. J. Ind. Eng. Chem. 2019, 79, 210-216.

78

Zhang, J. M.; Chaker, M.; Ma, D. L. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci. 2017, 489, 138-149.

79

Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671-2681.

80

Guo, S. J.; Dong, S. J.; Wang, E. K. Three-Dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547-555.

81

Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222-

82

Zhang, Y. H.; Lu, C. C.; Zhao, G. L.; Wang, Z. H. Facile synthesis of gold-platinum dendritic nanostructures with enhanced electrocatalytic performance for the methanol oxidation reaction. RSC Adv. 2016, 6, 51569-51574.

83

Yang, Z. Y.; Liu, X. L.; Zheng, X. H.; Zheng, J. B. Synthesis of Au@Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J. Electroanal. Chem. 2018, 817, 48-54.

84

Chen, H. Y.; Wang, A. J.; Zhang, L.; Yuan, J. H.; Zhang, Q. L.; Feng, J. J. One-pot wet-chemical synthesis of uniform AuPtPd nanodendrites as efficient electrocatalyst for boosting hydrogen evolution and oxygen reduction reactions. Int. J. Hydrogen Energy 2018, 43, 22187-22194.

85

Dutta, S.; Ray, C.; Sasmal, A. K.; Negishi, Y.; Pal, T. Fabrication of dog-bone shaped Au NRcore-Pt/Pdshell trimetallic nanoparticle-decorated reduced graphene oxide nanosheets for excellent electrocatalysis. J. Mater. Chem. A 2016, 4, 3765-3776.

86

Yang, J. H.; Shao, T.; Luo, C.; Li, J. L.; He, S. J.; Meng, B. W.; Zhang, Q. K.; Zhang, D. X.; Xue, Z. H.; Zhou, X. B. Simple synthesis of the Au-GQDs@AgPt Yolk-shell nanostructures electrocatalyst for enhancing the methanol oxidation. J. Alloys Compd. 2020, 834, 155056.

87

Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee, K. Pt-Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A 2019, 7, 17183-17203.

88

Qin, Y. D.; Han, X. Y.; Gadipelli, S.; Guo, J.; Wu, S. J.; Kang, L. Q.; Callison, J.; Guo, Z. X. In situ synthesized low-PtCo@porous carbon catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 6543-6551.

89

Yao, X. Z.; Wei, Y. P.; Wang, Z. X.; Gan, L. Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal. 2020, 10, 7381-7388.

90

Lu, X. X.; Tang, W. X.; Du, S. C.; Wen, L. Y.; Weng, J. F.; Ding, Y.; Willis, W. S.; Suib, S. L.; Gao, P. X. Ion-exchange loading promoted stability of platinum catalysts supported on layered protonated titanate- derived titania nanoarrays. ACS Appl. Mater. Interfaces 2019, 11, 21515-21525.

91

Cheng, Y.; Shen, P. K.; Jiang, S. P. Enhanced activity and stability of core-shell structured PtRuNix electrocatalysts for direct methanol fuel cells. Int. J. Hydrogen Energy 2016, 41, 1935-1943.

92

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

93

Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156-22166.

94

Lu, L. J.; Peng, L. S.; Li, L.; Li, J.; Huang, X.; Wei, Z. D. Improved hydrogen oxidation reaction under alkaline conditions by Au-Pt alloy nanoparticles. J. Energy Chem. 2020, 40, 52-56.

95

Wang, J. S.; Shi, R. R.; Guo, X.; Xi, J. Y.; Zhao, J. H.; Song, C. Y.; Wang, L. C.; Zhang, J. J. Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. Electrochim. Acta 2014, 123, 309-316.

96

Chen, L.; Kuai, L.; Yu, X.; Li, W. Z.; Geng, B. Y. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chem. —Eur. J. 2013, 19, 11753-11758.

97

Chen, L. X.; Liu, L.; Feng, J. J.; Wang, Z. G.; Wang, A. J. Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum-gold core-shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources 2016, 302, 140-145.

98

Koscher, G.; Kordesch, K. Can refillable alkaline methanol-air systems replace metal-air cells?. J. Power Sources 2004, 136, 215-219.

99

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142-1147.

100

Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B Environ. 2020, 263, 118345.

101

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.

102

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850-856.

103

Gong, L. Y.; Yang, Z. Y.; Li, K.; Xing, W.; Liu, C. P.; Ge, J. J. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. J. Energy Chem. 2018, 27, 1618-1628.

104

Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773-2776.

105

Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?. Chem. Rev. 2014, 114, 12397-12429.

106

Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95-110.

107

Luo, B.; Zhao, F. L.; Xie, Z. X.; Yuan, Q.; Yang, F.; Yang, X. T.; Li, C. Z.; Zhou, Z. Y. Polyhedron-assembled ternary PtCuCo nanochains: Integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature. ACS Appl. Mater. Interfaces 2019, 11, 32282-32290.

108

Hamnett, A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today 1997, 38, 445-457.

109

Du, J. N.; You, S. J.; Li, X. R.; Tang, B.; Jiang, B. J.; Yu, Y.; Cai, Z.; Ren, N. Q.; Zou, J. L. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 686-697.

110

Lee, M. J.; Kang, J. S.; Kang, Y. S.; Chung, D. Y.; Shin, H.; Ahn, C. Y.; Park, S.; Kim, M. J.; Kim, S.; Lee, K. S. et al. Understanding the bifunctional effect for removal of CO poisoning: Blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 2016, 6, 2398-2407.

111

Lee, E.; Kim, S.; Jang, J. H.; Park, H. U.; Matin, A.; Kim, Y. T.; Kwon, Y. U. Effects of particle proximity and composition of Pt-M (M = Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction. J. Power Sources 2015, 294, 75-81.

112

Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

113

Song, P. P.; Lei, Y. J.; Hu, X. B.; Wang, C.; Wang, J. L.; Tang, Y. P. Rapid one-step synthesis of carbon-supported platinum-copper nanoparticles with enhanced electrocatalytic activity via microwave- assisted heating. J. Colloid Interface Sci. 2020, 574, 421-429.

114

Tan, C. H.; Sun, Y. H.; Zheng, J. Z.; Wang, D.; Li, Z. Y.; Zeng, H. J.; Guo, J.; Jing, L. Q.; Jiang, L. A self-supporting bimetallic Au@Pt core-shell nanoparticle electrocatalyst for the synergistic enhancement of methanol oxidation. Sci. Rep. 2017, 7, 6347.

115

Bi, Q. Y.; Du, X. L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J. Am. Chem. Soc. 2012, 134, 8926-8933.

116

Ishida, T.; Haruta, M. Gold catalysts: Towards sustainable chemistry. Angew. Chem., Int. Ed. 2007, 46, 7154-7156.

117

Wang, C. J.; Zhao, Y. L.; Xu, H.; Li, Y. F.; Wei, Y. C.; Liu, J.; Zhao, Z. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl. Catal. B Environ. 2020, 263, 118314.

118

Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389-393.

119

Hu, X.; Zou, J. S.; Gao, H. C.; Kang, X. W. Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on CO adsorption and electrocatalytic activity of formic acid oxidation. J. Colloid Interface Sci. 2020, 570, 72-79.

120

Cameron, D.; Holliday, R.; Thompson, D. Gold's future role in fuel cell systems. J. Power Sources 2003, 118, 298-303.

121

Jiang, J. C.; Lei, J.; Hu, Y. J.; Bi, W.; Xu, N.; Li, Y. F.; Chen, X. L.; Jiang, H.; Li, C. Z. Electron transfer effect from Au to Pt in Au-Pt/TiO2 towards efficient catalytic activity in CO oxidation at low temperature. Appl. Surf. Sci. 2020, 521, 146447.

122

Feng, X. Q.; Meng, D.; Yang, Y.; Tan, Z. Y.; Liang, J. H.; Xiao, C. Au/SBA-15 catalyst prepared by ozone treatment and importance of negatively charged gold in CO oxidation by DRIFTS. Chemosphere 2020, 250, 126274.

123

Wang, K.; Liu, X. Y.; Tang, X. Y.; Jin, X.; Yang, W. J.; Wang, J. C.; Li, J.; Zhang, X. L.; Liu, B. D. In situ grown monolithic Au/TiO2 catalysts on flexible Ti mesh for efficient low-temperature CO oxidation. Adv. Mater. Technol. 2020, 5, 2000115.

124

Xi, Y. J.; Heyden, A. Preferential oxidation of CO in hydrogen at nonmetal active sites with high activity and selectivity. ACS Catal. 2020, 10, 5362-5370.

125

Luo, J.; Maye, M. M.; Kariuki, N. N.; Wang, L. Y.; Njoki, P.; Lin, Y.; Schadt, M.; Naslund, H. R.; Zhong, C. J. Electrocatalytic oxidation of methanol: Carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catal. Today 2005, 99, 291-297.

126

Hu, Y. J.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. X. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys. 2011, 13, 4083-4094.

127

Kube, S. A.; Xing, W. T.; Kalidindi, A.; Sohn, S.; Datye, A.; Amram, D.; Schuh, C. A.; Schroers, J. Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Mater. 2020, 188, 40-48.

128

Cabello, G.; Davoglio, R. A.; Marco, J. F.; Cuesta, A. Probing electronic and atomic ensembles effects on PtAu3 nanoparticles with CO adsorption and electrooxidation. J. Electroanal. Chem. 2020, 870, 114233.

129

You, G. J.; Jiang, J.; Li, M.; Li, L.; Tang, D. Y.; Zhang, J.; Zeng, X. C.; He, R. X. PtPd(111) surface versus PtAu(111) surface: Which one is more active for methanol oxidation?. ACS Catal. 2018, 8, 132-143.

130

Thota, A.; Boga, K.; Narayan, R.; Bojja, S.; Rao, C. R. K. Synthesis of star shaped electroactive, LEB state aniline oligomer and its high performing Pt and Pt-Au nanocatalyst for MOR. Int. J. Hydrogen Energy 2019, 44, 11066-11078.

131

Podlovchenko, B. I.; Maksimov, Y. M. Peculiarities in the electrocatalytic behavior of ultralow platinum deposits on gold synthesized by galvanic displacement. J. Electroanal. Chem. 2015, 756, 140-146.

132

Ren, F. F.; Zhai, C. Y.; Zhu, M. S.; Wang, C. Q.; Wang, H. W.; Bin, D.; Guo, J.; Yang, P.; Du, Y. K. Facile synthesis of PtAu nanoparticles supported on polydopamine reduced and modified graphene oxide as a highly active catalyst for methanol oxidation. Electrochim. Acta 2015, 153, 175-183.

133

Sugioka, D.; Kameyama, T.; Kuwabata, S.; Yamamoto, T.; Torimoto, T. Formation of a Pt-decorated Au nanoparticle monolayer floating on an ionic liquid by the ionic liquid/metal sputtering method and tunable electrocatalytic activities of the resulting monolayer. ACS Appl. Mater. Interfaces 2016, 8, 10874-10883.

134

Ilayaraja, N.; Prabu, N.; Lakshminarasimhan, N.; Murugan, P.; Jeyakumar, D. Au-Pt graded nano-alloy formation and its manifestation in small organics oxidation reaction. J. Mater. Chem. A 2013, 1, 4048-4056.

135

Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006, 22, 2892-2898.

136

Shi, H. X.; Liao, F.; Zhu, W. X.; Shao, C. R.; Shao, M. W. Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation. Int. J. Hydrogen Energy 2020, 45, 16071-16079.

137

Wolf, M.; Caro, J.; Feldhoff, A.; Steinbach, F.; Schulz-Ruhtenberg, M.; Lange, K. Laser directed dynamic hydrogen template deposition of porous Pt@Ag networks. Electrochim. Acta 2017, 252, 430-437.

138

He, L. L.; Zheng, J. N.; Song, P.; Zhong, S. X.; Wang, A. J.; Chen, Z. J.; Feng, J. J. Facile synthesis of platinum-gold alloyed string-bead nanochain networks with the assistance of allantoin and their enhanced electrocatalytic performance for oxygen reduction and methanol oxidation reactions. J. Power Sources 2015, 276, 357-364.

139

Wang, Z.; Huang, L.; Tian, Z. Q.; Shen, P. K. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation. J. Mater. Chem. A 2019, 7, 18619-18625.

140

Yoo, S.; Cho, S.; Kim, D.; Ih, S.; Lee, S.; Zhang, L. Q.; Li, H.; Lee, J. Y.; Liu, L. C.; Park, S. 3D PtAu nanoframe superstructure as a high-performance carbon-free electrocatalyst. Nanoscale 2019, 11, 2840-2847.

141

Banerjee, I.; Kumaran, V.; Santhanam, V. Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 2015, 119, 5982-5987.

142

Peng, L. Y.; Gan, L.; Wei, Y. P.; Yang, H.; Li, J.; Du, H. D.; Kang, F. Y. Pt submonolayers on au nanoparticles: Coverage-dependent atomic structures and electrocatalytic stability on methanol oxidation. J. Phys. Chem. C 2016, 120, 28664-28671.

143

Wang, X. D.; Sun, M. J.; Guo, Y.; Hu, J. Y.; Zhu, M. S. Three dimensional Pt island-on-Au architectures coupled with graphite carbon nitride nanosheets for effective photo-accelerated methanol electro-oxidation. J. Colloid Interface Sci. 2020, 558, 38-46.

144

Xie, Y. X.; Li, Z. S.; Liu, Y.; Ye, Y. X.; Zou, X. H.; Lin, S. Plasmon enhanced bifunctional electro-photo catalytic properties of Pt-Au/graphene composites for methanol oxidation and oxygen reduction reaction. Appl. Surf. Sci. 2020, 508, 145161.

145

Feng, Y. Y.; Song, G. H.; Zhang, Q.; Hu, H. S.; Feng, M. Y.; Wang, J. Y.; Kong, D. S. Catalytic performance of non-alloyed bimetallic PtAu electrocatalysts for methanol oxidation reaction. Int. J. Hydrogen Energy 2017, 42, 30109-30118.

146

Zhong, W. H.; Liu, Y. X.; Zhang, D. J. Theoretical study of methanol oxidation on the PtAu(111) bimetallic surface: CO pathway vs non-CO pathway. J. Phys. Chem. C 2012, 116, 2994-3000.

147

Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262-3265.

148

Wang, C. Q.; Ren, F. F.; Zhai, C. Y.; Zhang, K.; Yang, B. B.; Bin, D.; Wang, H. W.; Yang, P.; Du, Y. K. Au-Cu-Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity. RSC Adv. 2014, 4, 57600-57607.

149

Fu, Q. Q.; Li, H. H.; Ma, S. Y.; Hu, B. C.; Yu, S. H. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci. China Mater. 2016, 59, 112-121.

150

Li, Z. R. Li, J. J.; Wang, Z. H. Synthesis of Au@PtAuAg yolk-shell nanoalloy as an electrocatalyst for methanol oxidation reaction. Int. J. Electrochem. Sci. 2019, 14, 3291-3300.

151

Huan, T. N.; Shinde, D. V.; Kim, S.; Han, S. H.; Artero, V.; Chung, H. Forest of Pt-Au-Ag tri-metallic nanodendrites as an efficient electrocatalyst for methanol oxidation reaction. RSC Adv. 2015, 5, 6940-6944.

152

Thongthai, K.; Pakawanit, P.; Chanlek, N.; Kim, J. H.; Ananta, S.; Srisombat, L. Ag/Au/Pt trimetallic nanoparticles with defects: Preparation, characterization, and electrocatalytic activity in methanol oxidation. Nanotechnology 2017, 28, 375602.

153

Bi, J. L.; Gao, P. F.; Wang, B.; Yu, X. J.; Kong, C. C.; Xu, L.; Zhang, X. J.; Yang, S. C. Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure. J. Mater. Chem. A 2020, 8, 6638-6646.

154

Cai, X. L.; Liu, C. H.; Liu, J.; Lu, Y.; Zhong, Y. N.; Nie, K. Q.; Xu, J. L.; Gao, X.; Sun, X. H.; Wang, S. D. Synergistic effects in CNTs-PdAu/Pt trimetallic nanoparticles with high electrocatalytic activity and stability. Nano-Micro Lett. 2017, 9, 48.

155

Chen, T. W.; Huang, W. F.; Kang, J. X.; Zhang, D. F.; Guo, L. Cycling potential engineering surface configuration of sandwich Au@Ni@PtNiAu for superior catalytic durability. Nano Energy 2018, 52, 22-28.

156

Zhang, H. X.; Okawa, Y.; Kato, M.; Sasaki, Y.; Uosaki, K. Construction of Pt-Ni nanocomposites from Pt-Ni multinuclear complexes on gold(111) surface and their electrocatalytic activity for methanol oxidation. J. Electroanal. Chem. 2016, 781, 41-47.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2021
Revised: 02 March 2021
Accepted: 20 March 2021
Published: 04 July 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Guangxi Science and Technology Project (Nos. AA17204083 and AB16380030), the link project of the National Natural Science Foundation of China and Fujian Province (No. U1705252), and the Natural Science Foundation of Guangdong Province (No. 2015A030312007).

Return