Journal Home > Volume 15 , Issue 1

On the basis of known structures of β-GeTe bulk and the derived monolayer, we proposed a series of structural analogues MXs (M = Ge, Sn; X = S, Se, Te) with an intrinsic built-in electric field via a substitution strategy. Using first-principles calculations, we demonstrated that these MX monolayers and bulks are thermodynamically, dynamically and mechanically stable, and the stabilities of bulks are more robust than the monolayer counterparts. Electronic calculations showed that the monolayers have large band gaps ranging from 2.38 to 3.27 eV while the bulks have pronounced small band gaps ranging from 0.06 to 0.78 eV. The calculated piezoelectric coefficients d11 for the MX monolayers are in the range from 6.6 to 10.9 pm/V. Strikingly, the calculated d33 for the MX bulks are as high as 40.3–213.7 pm/V. By correlating atomic polarizability, atomic mass, relative ion motion, Bader charge and lattice parameters, we proposed an empirical model to estimate the piezoelectric coefficients for the two-dimensional (2D) MXs, where a nice match between the estimated ones and the calculated ones was found. The versatile electronic properties and large piezoelectric coefficients endow MXs a broad prospect of application in optoelectronic and piezoelectric devices, and the revealed underlying mechanisms offer valuable guidelines for seeking novel piezoelectrics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical insights into strong intrinsic piezoelectricity of blue- phosphorus-like group-Ⅳ monochalcogenides

Show Author's information Yuxin DaiXiaoli ZhangYu CuiMengyuan LiYao LuoFan JiangRenqiang ZhaoYucheng Huang( )
College of Chemistry and Material Science Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes The Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials Anhui Normal UniversityWuhu 241000 China

Abstract

On the basis of known structures of β-GeTe bulk and the derived monolayer, we proposed a series of structural analogues MXs (M = Ge, Sn; X = S, Se, Te) with an intrinsic built-in electric field via a substitution strategy. Using first-principles calculations, we demonstrated that these MX monolayers and bulks are thermodynamically, dynamically and mechanically stable, and the stabilities of bulks are more robust than the monolayer counterparts. Electronic calculations showed that the monolayers have large band gaps ranging from 2.38 to 3.27 eV while the bulks have pronounced small band gaps ranging from 0.06 to 0.78 eV. The calculated piezoelectric coefficients d11 for the MX monolayers are in the range from 6.6 to 10.9 pm/V. Strikingly, the calculated d33 for the MX bulks are as high as 40.3–213.7 pm/V. By correlating atomic polarizability, atomic mass, relative ion motion, Bader charge and lattice parameters, we proposed an empirical model to estimate the piezoelectric coefficients for the two-dimensional (2D) MXs, where a nice match between the estimated ones and the calculated ones was found. The versatile electronic properties and large piezoelectric coefficients endow MXs a broad prospect of application in optoelectronic and piezoelectric devices, and the revealed underlying mechanisms offer valuable guidelines for seeking novel piezoelectrics.

Keywords: density functional theory, piezoelectricity, electronic property, Janus, blue-phosphorus, group-Ⅳ monochalcogenides

References(65)

1

Song, H. B.; Karakurt, I.; Wei, M. S.; Liu, N.; Chu, Y.; Zhong, J. W.; Lin, L. W. Lead iodide nanosheets for piezoelectric energy conversion and strain sensing. Nano Energy 2018, 49, 7–13.

2

Han, M. D.; Wang, H. L.; Yang, Y. Y.; Liang, C. M.; Bai, W. B.; Yan, Z.; Li, H. B.; Xue, Y. G.; Wang, X. L.; Akar, B. et al. Three- dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2019, 2, 26–35.

3

Yang, Z. B.; Zhou, S. X.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697.

4

Chorsi, M. T.; Curry, E. J.; Chorsi, H. T.; Das, R.; Baroody, J.; Purohit, P. K.; Ilies, H.; Nguyen, T. D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084.

5

Zhong, H. K.; Xia, J.; Wang, F. C.; Chen, H. S.; Wu, H. A; Lin, S. S. Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 2017, 27, 1604226.

6

Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

7

Janshoff, A.; Galla, H. J.; Steinem, C. Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew. Chem., Int. Ed. 2000, 39, 4004–4032.

DOI
8

Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

9

Sevik, C.; Çakır, D.; Gülseren, O.; Peeters, F. M. Peculiar piezoelectric properties of soft two-dimensional materials. J. Phys. Chem. C 2016, 120, 13948–13953.

10

Gao, R. L.; Gao, Y. Y. Piezoelectricity in two-dimensional group Ⅲ-Ⅴ buckled honeycomb monolayers. Phys. Status Solidi Rapid Res. Lett. 2017, 11, 1600412.

11

Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

12

Li, W. B.; Li, J. Piezoelectricity in two-dimensional group-Ⅲ monochalcogenides. Nano Res. 2015, 8, 3796–3802.

13

Guo, Y.; Zhou, S.; Bai, Y. Z.; Zhao, J. J. Enhanced piezoelectric effect in Janus group-Ⅲ chalcogenide monolayers. Appl. Phys. Lett. 2017, 110, 163102.

14

Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer group Ⅳ monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

15

Duerloo, K. A. N.; Ong, M. T.; Ree Duerloo, K.-A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.

16

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

17

Alyörük, M. M.; Aierken, Y.; Çakır, D.; Peeters, F. M.; Sevik, C. Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. J. Phys. Chem. C 2015, 119, 23231– 23237.

18

Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D. Q.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198.

19

Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

20

Dimple; Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M. K.; De Sarkar, A. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers. J. Mater. Chem. A 2018, 6, 24885–24898.

21

Zhang, C. M.; Nie, Y. H.; Sanvito, S.; Du, A. J. First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization. Nano Lett. 2019, 19, 1366–1370.

22

Chen, Y.; Liu, J. Y.; Yu, J. B.; Guo, Y. G.; Sun, Q. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 2019, 21, 1207–1216.

23

Cui, Y.; Peng, L.; Sun, L. P.; Li, M. Y.; Zhang, X. L.; Huang, Y. C. Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers. J. Phys. Condens. Matter 2020, 32, 08LT01.

24

Zhang, X. L.; Cui, Y.; Sun, L. P.; Li, M. Y.; Du, J. Y.; Huang, Y. C. Stabilities, and electronic and piezoelectric properties of two- dimensional tin dichalcogenide derived Janus monolayers. J. Mater. Chem. C 2019, 7, 13203–13210.

25

Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

26

Zhu, Z.; Guan, J.; Tomanek, D. Structural transition in layered As1–xPx compounds: A computational study. Nano Lett. 2015, 15, 6042–6046.

27

Xie, M. Q.; Zhang, S. L.; Cai, B.; Huang, Y.; Zou, Y. S.; Guo, B.; Gu, Y.; Zeng, H. B. A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14, 000 cm2·V–1·s–1. Nano Energy 2016, 28, 433–439.

28

Yin, H. B.; Gao, J. W.; Zheng, G. P.; Wang, Y. X.; Ma, Y. C. Giant piezoelectric effects in monolayer group-Ⅴ binary compounds with honeycomb phases: A first-principles prediction. J. Phys. Chem. C 2017, 121, 25576–25584.

29

Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

30

Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 55, 1666–1669.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

32

Blöchl, P. E. Projector-Augmented-Wave method. Phys. Rev. B 1994, 50, 17953–17979.

33

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

34

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244– 13249.

35

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

36

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

37

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

38

Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1192.

39

Wu, X. F.; Vanderbilt, D.; Hamann, D. R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B: 2005, 72, 035105.

40

Nunes, R. W.; Gonze, X. Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys. Rev. B 2001, 63, 155107.

41

Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

42

Singh, A. K.; Hennig, R. G. Computational prediction of two- dimensional group-Ⅳ mono-chalcogenides. Appl. Phys. Lett. 2014, 105, 042103.

43

Wdowik, U. D.; Parlinski, K.; Rols, S.; Chatterji, T. Soft-phonon mediated structural phase transition in GeTe. Phys. Rev. B 2014, 89, 224306.

44

Tung, Y. W.; Cohen, M. L. Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys. Rev. 1969, 180, 823–826.

45

Chattopadhyay, T.; Boucherle, J. X.; vonSchnering, H. G. Neutron diffraction study on the structural phase transition in GeTe. J. Phys. C Solid State Phys. 1987, 20, 1431–1440.

46

Ji, Y. J.; Yang, M. Y.; Dong, H. L.; Hou, T. J.; Wang, L.; Li, Y. Y. Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale 2017, 9, 8608–8615.

47

Kamal, C.; Chakrabarti, A.; Ezawa, M. Direct band gaps in group Ⅳ-Ⅵ monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428.

48

Qiao, M.; Chen, Y. L.; Wang, Y.; Li, Y. F. The germanium telluride monolayer: A two dimensional semiconductor with high carrier mobility for photocatalytic water splitting. J. Mater. Chem. A 2018, 6, 4119–4125.

49

Do, T. N.; Idrees, M.; Amin, B.; Hieu, N. N.; Phuc, H. V.; Hoa, L. T.; Nguyen, C. V. First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chem. Phys. 2020, 539, 110939.

50

Sun, L. P.; Cui, Y.; Peng, L.; Du, J. Y.; Wang, S. F.; Huang, Y. C. Two- dimensional blue-phosphorene-phase germanium monochalcogenide photocatalysts for water splitting: From ultraviolet to visible absorption. J. Catal. 2019, 373, 67–74.

51

Hu, T.; Dong, J. M. Two new phases of monolayer group-Ⅳ monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 2016, 18, 32514–32520.

52

Ouyang, W. X.; Teng, F.; He, J. H.; Fang, X. S. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 29, 1807672.

53

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self- assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

54

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

55

Xu, L.; Yang, M.; Wang, S. J.; Feng, Y. P. Electronic and optical properties of the monolayer group-Ⅳ monochalcogenides MX (M = Ge, Sn; X = S, Se, Te). Phys. Rev. B 2017, 95, 235434.

56

Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Clarendon Press: Oxford, 1954.

57

Wang, J. J.; Meng, F. Y.; Ma, X. Q.; Xu, M. X.; Chen, L. Q. Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles. J. Appl. Phys. 2010, 108, 034107.

58

Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 2007, 76, 054115.

59

Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford: New York, 1985.

60

Zhu, Z.; Guan, J.; Liu, D.; Tománek, D. Designing isoelectronic counterparts to layered group Ⅴ semiconductors. ACS Nano 2015, 9, 8284–8290.

61

Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802.

62

Lueng, C. M.; Chan, H. L. W.; Surya, C.; Choy, C. L. Piezoelectric coefficient of aluminum nitride and gallium nitride. J. Appl. Phys. 2000, 88, 5360–5363.

63

Zhao, M. H.; Wang, Z. L.; Mao, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4, 587–590.

64

Bechmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 1958, 110, 1060–1061.

65
Arlı, C.; Kocabaş, T.; Çakr, D.; Sevik, C. A genuine correlation in piezoelectric properties of two-dimensional materials: A high- throughput computational study. 2020, arXiv: 2002.05803.
File
12274_2021_3460_MOESM1_ESM.pdf (934.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2020
Revised: 01 March 2021
Accepted: 20 March 2021
Published: 19 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 1573002) and Natural Science Funds for Distinguished Young Scholar of Anhui Province (No. 1908085J08). The numerical calculations in this paper have done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Return