Journal Home > Volume 14 , Issue 9

Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health. Non-contact, capacitive sensing electrodes prevent potential skin irritations, and are thus beneficial for long-term monitoring. Existing capacitive electrodes are either connected to a separate control circuit via external wires or have limited sensing capacitances, which leads to low signal qualities. This study demonstrates a stretchable capacitive sensing device with integrated electrodes and control electronics, with enhanced signal qualities. The electrodes and the control electronics are fabricated on a common fabric substrate for breathability and strain-limiting protection. The stretchable electrodes are based on an island-bridge design with a stretchability as high as ~ 100%, and an area ratio as high as ~ 80%. By using a dielectric calcium copper titanate (CCTO) composite as the adhesive layer, the electrode capacitance can be increased, yielding an enhanced signal-to-noise ratio (SNR) in the acquired biopotentials. This device offers a convenient and comfortable approach for long-term non-contact monitoring of biopotential signals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles

Show Author's information Xiangjun Chen1,§Xiaoxiang Gao2,§Akihiro Nomoto2,§Keren Shi1Muyang Lin2Hongjie Hu1Yue Gu1Yangzhi Zhu2Zhuohong Wu2Xue Chen1Xinyu Wang2Baiyan Qi1Sai Zhou1Hong Ding2Sheng Xu1,2,3,4( )
Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA

§ Xiangjun Chen, Xiaoxiang Gao, and Akihiro Nomoto contributed equally to this work.

Abstract

Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health. Non-contact, capacitive sensing electrodes prevent potential skin irritations, and are thus beneficial for long-term monitoring. Existing capacitive electrodes are either connected to a separate control circuit via external wires or have limited sensing capacitances, which leads to low signal qualities. This study demonstrates a stretchable capacitive sensing device with integrated electrodes and control electronics, with enhanced signal qualities. The electrodes and the control electronics are fabricated on a common fabric substrate for breathability and strain-limiting protection. The stretchable electrodes are based on an island-bridge design with a stretchability as high as ~ 100%, and an area ratio as high as ~ 80%. By using a dielectric calcium copper titanate (CCTO) composite as the adhesive layer, the electrode capacitance can be increased, yielding an enhanced signal-to-noise ratio (SNR) in the acquired biopotentials. This device offers a convenient and comfortable approach for long-term non-contact monitoring of biopotential signals.

Keywords: stretchable, signal-to-noise ratio (SNR), capacitive sensing, biopotential, calcium copper titanate (CCTO)

References(36)

[1]
Brugarolas, R.; Dieffenderfer, J.; Walker, K.; Wagner, A.; Sherman, B.; Roberts, D.; Bozkurt, A. Wearable wireless biophotonic and biopotential sensors for canine health monitoring. In SENSORS, 2014 IEEE, Valencia, Spain, 2014, pp 2203-2206.
DOI
[2]
Samol, A.; Bischof, K.; Luani, B.; Pascut, D.; Wiemer, M.; Kaese, S. Single-lead ECG recordings including Einthoven and Wilson Leads by a smartwatch: A new era of patient directed early ECG differential diagnosis of cardiac diseases? Sensors 2019, 19, 4377.
[3]
Ibaida, A.; Khalil, I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans. Biomed. Eng. 2013, 60, 3322-3330.
[4]
Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
[5]
Dantas, H.; Warren, D. J.; Wendelken, S. M.; Davis, T. S.; Clark, G. A.; Mathews, V. J. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Trans. Biomed. Eng. 2019, 66, 3192-3203.
[6]
Dias, N. S.; Ferreira, J. F.; Figueiredo, C. P.; Correia, J. H. A wireless system for biopotential acquisition: An approach for non-invasive brain-computer interface. In Proceedings of 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp 2709-2712.
DOI
[7]
Lobodzinski, S. S.; Laks, M. M. New devices for very long-term ECG monitoring. Cardiol. J. 2012, 19, 210-214.
[8]
Zehender, M.; Meinertz, T.; Keul, J.; Just, H. ECG variants and cardiac arrhythmias in athletes: Clinical relevance and prognostic importance. Am. Heart J. 1990, 119, 1378-1391.
[9]
Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525-1532.
[10]
Liu, S. H.; Lin, C. B.; Chen, Y.; Chen, W. X.; Huang, T. S.; Hsu, C. Y. An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise. Sensors 2019, 19, 3108.
[11]
Li, G. L.; Wang, S. Z.; Duan, Y. Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens. Actuators B Chem. 2018, 277, 250-260.
[12]
Griffith, M. E.; Portnoy, W. M.; Stotts, L. J.; Day, J. L. Improved capacitive electrocardiogram electrodes for burn applications. Med. Biol. Eng. Comput. 1979, 17, 641-646.
[13]
Spinelli, E.; Haberman, M.; García, P.; Guerrero, F. A capacitive electrode with fast recovery feature. Physiol. Meas. 2012, 33, 1277-1288.
[14]
Sun, Y.; Yu, X. B. Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sens. J. 2016, 16, 2832-2853.
[15]
Portelli, A. J.; Nasuto, S. J. Design and development of non-contact bio-potential electrodes for pervasive health monitoring applications. Biosensors 2017, 7, 2.
[16]
Sundaram, P. S. S.; Basker, N. H.; Natrayan, L. Smart clothes with bio-sensors for ECG monitoring. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 298-301.
[17]
Pehr, S.; Zollitsch, D.; Güttler, J.; Bock, T. Development of a non-contact ECG application unobtrusively embedded into a bed. In Proceedings of 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France, 2019, pp 1-6.
DOI
[18]
Singh, R. K.; Sarkar, A.; Anoop, C. S. A health monitoring system using multiple non-contact ECG sensors for automotive drivers. In Proceedings of 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, China, 2016, pp 1-6.
DOI
[19]
Das, P. S.; Park, J. Y. A flexible touch sensor based on conductive elastomer for biopotential monitoring applications. Biomed. Signal Process. Control 2017, 33, 72-82.
[20]
Jeong, J. W.; Kim, M. K.; Cheng, H.; Yeo, W. H.; Huang, X.; Liu, Y. H.; Zhang, Y. H.; Huang, Y. G.; Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 2014, 3, 642-648.
[21]
Dong, W. T.; Cheng, X.; Xiong, T.; Wang, X. M. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevices 2019, 21, 6.
[22]
Das, P. S.; Kim, J. W.; Park, J. Y. Fashionable wrist band using highly conductive fabric for electrocardiogram signal monitoring. J. Ind. Textiles 2019, 49, 243-261.
[23]
Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219-3226.
[24]
Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.
[25]
Zhang, M. C.; Wang, C. Y.; Liang, X. P.; Yin, Z.; Xia, K. L.; Wang, H. M.; Jian, M. Q.; Zhang, Y. Y. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv. Electron. Mater. 2017, 3, 1700193.
[26]
Yuan, L.; Zhang, M.; Zhao, T. T.; Li, T. K.; Zhang, H.; Chen, L. L.; Zhang, J. H. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sens. Actuators A Phys. 2020, 315, 112192.
[27]
Gong, M.; Wan, P. B.; Ma, D.; Zhong, M. J.; Liao, M. H.; Ye, J. J.; Shi, R.; Zhang, L. Q. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 2019, 29, 1902127.
[28]
Huang, Z. L.; Hao, Y. F.; Li, Y.; Hu, H. J.; Wang, C. H.; Nomoto, A.; Pan, T. S.; Gu, Y.; Chen, Y. M.; Zhang, T. J. Three-dimensional integrated stretchable electronics. Nat. Electron. 2018, 1, 473-480.
[29]
Jang, K. I.; Han, S. Y.; Xu, S.; Mathewson, K. E.; Zhang, Y. H.; Jeong, J. W.; Kim, G. T.; Webb, R. C.; Lee, J. W.; Dawidczyk, T. J. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 2014, 5, 4779.
[30]
Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate. Mater. Sci. Eng. C 2007, 27, 110-116.
[31]
Bele, A.; Stiubianu, G.; Varganici, C. D.; Ignat, M.; Cazacu, M. Silicone dielectric elastomers based on radical crosslinked high molecular weight polydimethylsiloxane co-filled with silica and barium titanate. J. Mater. Sci. 2015, 50, 6822-6832.
[32]
Cherney, E. A. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEEE Trans. Dielectrics Electrical Insulat. 2005, 12, 1108-1115.
[33]
Singh, D. P.; Mohapatra, Y. N.; Agrawal, D. C. Dielectric and leakage current properties of sol-gel derived calcium copper titanate (CCTO) thin films and CCTO/ZrO2 multilayers. Mater. Sci. Eng. B 2009, 157, 58-65.
[34]
Duan, L.; Wang, G. L.; Zhang, Y. Y.; Zhang, Y. N.; Wei, Y. Y.; Wang, Z. F.; Zhang, M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym. Compos. 2018, 39, 691-697.
[35]
Vlach, K.; Kijonka, J.; Jurek, F.; Vavra, P.; Zonca, P. Capacitive biopotential electrode with a ceramic dielectric layer. Sens. Actuators B Chem. 2017, 245, 988-995.
[36]
Yang, Y.; Hu, H. J.; Chen, Z. Y.; Wang, Z. Y.; Jiang, L. M.; Lu, G. X.; Li, X. J.; Chen, R. M.; Jin, J.; Kang, H. C. et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 2020, 20, 4445-4453.
File
12274_2021_3458_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2021
Revised: 17 March 2021
Accepted: 21 March 2021
Published: 15 April 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

We thank Yutaka Imai and Yota Komoriya for their support to this project and S. Xiang for constructive feedback on the manuscript preparation. This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-18-2-5402. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory (AFRL) or the U.S. Government. All bio-experiments were conducted with the approval of the Institutional Review Board of the University of California, San Diego.

Return