Journal Home > Volume 15 , Issue 1

Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO4 nanorods (P-NiMoO4) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li+ diffusion kinetics of NiMoO4 materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO4 nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO4, which can accelerate Li+ diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO4 electrode delivered a high specific capacity (1, 130 mAh·g−1 at 100 mA·g−1 after 100 cycles), outstanding cycling durability (945 mAh·g−1 at 500 mA·g−1 over 200 cycles), and impressive rate performance (640 mAh·g−1 at 2, 000 mA·g−1) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage

Show Author's information Luchao Yue1,2Chaoqun Ma3Shihai Yan3Zhenguo Wu1Wenxi Zhao2Qian Liu2( )Yonglan Luo2Benhe Zhong1Fang Zhang4Yang Liu5Abdulmohsen Ali Alshehri6Khalid Ahmed Alzahrani6Xiaodong Guo1( )Xuping Sun2( )
School of Chemical Engineering Sichuan UniversityChengdu 610065 China
Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of ChinaChengdu 610054 China
College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural UniversityQingdao 266109 China
National Engineering Research Center for Nanotechnology No. 28 East Jiang Chuan Road, Shanghai 200241 China
School of Materials Science and Engineering Henan Normal UniversityXinxiang 453007 China
Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia

Abstract

Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO4 nanorods (P-NiMoO4) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li+ diffusion kinetics of NiMoO4 materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO4 nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO4, which can accelerate Li+ diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO4 electrode delivered a high specific capacity (1, 130 mAh·g−1 at 100 mA·g−1 after 100 cycles), outstanding cycling durability (945 mAh·g−1 at 500 mA·g−1 over 200 cycles), and impressive rate performance (640 mAh·g−1 at 2, 000 mA·g−1) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.

Keywords: anode, lithium ion batteries, phosphorus doping, NiMoO4

References(55)

1

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

2

Liu, Z. L.; Wang, X. X.; Wu, Z. Y.; Yang, S. J.; Yang, S. L.; Chen, S. P.; Wu, X. T.; Chang, X. H.; Yang, P. P.; Zheng, J. et al. Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Res. 2020, 13, 3157–3164.

3

Fan, Z. Y.; Liang, J.; Yu, W.; Ding, S. J.; Cheng, S. D.; Yang, G.; Wang, Y. L.; Xi, Y. X.; Xi, K.; Kumar, R. V. Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 2015, 16, 152–162.

4

Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

5

Yue, H. L.; Wang, G. M.; Jin, R. C.; Wang, Q. Y.; Cui, Y. M.; Gao, S. M. Sulfur-doped amorphous NiMoO4 on crystalline Fe2O3 nanorods for enhanced lithium storage performance. J. Mater. Chem. A 2018, 6, 23819–23827.

6

Jiang, G. X.; Li, L.; Xie, Z. J.; Cao, B. Q. Facile fabrication of porous NiMoO4@C nanowire as high performance anode material for lithium ion batteries. Ceram. Int. 2019, 45, 18462–18470.

7

Park, J. S.; Cho, J. S.; Kang, Y. C. Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J. Power Sources 2018, 379, 278–287.

8

Liu, W. L.; Zhi, H. Q.; Yu, X. B. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater. 2019, 16, 290–322.

9

Haetge, J.; Djerdj, I.; Brezesinski, T. Nanocrystalline NiMoO4 with an ordered mesoporous morphology as potential material for rechargeable thin film lithium batteries. Chem. Commun. 2012, 48, 6726–6728.

10

Wang, X.; Kim, H. M.; Xiao, Y.; Sun, Y. K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 14915–14931.

11

Huang, L.; Xiang, J. W.; Zhang, W.; Chen, C. J.; Xu, H. H.; Huang, Y. H. 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 22081–22087.

12

Wang, B.; Li, S. M.; Wu, X. Y.; Tian, W. M.; Liu, J. H.; Yu, M. Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J. Mater. Chem. A 2015, 3, 13691–13698.

13

Xiao, K.; Xia, L.; Liu, G. X.; Wang, S. Q.; Ding, L. X.; Wang, H. H. Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high- performance electrochemical energy storage. J. Mater. Chem. A 2015, 3, 6128–6135.

14

Wang, S. G.; Lin, J.; Fan, C. Y.; Li, Y. F.; Zhang, J. P.; Wu, X. L.; Sun, H. Z.; Deng, M. X.; Su, Z. M. Target encapsulating NiMoO4 nanocrystals into 1D carbon nanofibers as free-standing anode material for lithium- ion batteries with enhanced cycle performance. J. Alloys Compd. 2020, 830, 154648.

15

Perkins, J. D.; Paudel, T. R.; Zakutayev, A.; Ndione, P. F.; Parilla, P. A.; Young, D. L.; Lany, S.; Ginley, D. S.; Zunger, A.; Perry, N. H. et al. Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels. Phys. Rev. B 2011, 84, 205207.

16

Zou, X. X.; Su, J. A.; Silva, R.; Goswami, A.; Sathe, B. R.; Asefa, T. Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chem. Commun. 2013, 49, 7522–7524.

17

Song, H.; Yun, S. W.; Chun, H. H.; Kim, M. G.; Chung, K. Y.; Kim, H. S.; Cho, B. W.; Kim, Y. T. Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy Environ. Sci. 2012, 5, 9903–9913.

18

Banerjee, S.; Debata, S.; Madhuri, R.; Sharma, P. K. Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction. Appl. Surf. Sci. 2018, 449, 660–668.

19

Chen, C. C.; Huang, Y. A.; Zhang, H.; Wang, X. F.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. J. Power Sources 2016, 314, 66–75.

20

Yan, C. S.; Zhu, Y.; Li, Y. T.; Fang, Z. W.; Peng, L. L.; Zhou, X.; Chen, G.; Yu, G. H. Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv. Funct. Mater. 2018, 28, 1705951.

21

Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

22

Song, H.; Kim, Y. T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution. Chem. Commun. 2015, 51, 9849–9852.

23

Guan, B. Y.; Yu, L.; Lou, X. W. General synthesis of multishell mixed- metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 2386–2389.

24

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

25

Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1999, 6, 15–50.

26

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14, 2717–2744.

27

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B, Condens. Matter 1994, 50, 17953–17979.

28

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

29

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

30

Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects. Chem. Rev. 2014, 114, 9824–9852.

31

Yue, L. C.; Zhao, H. T.; Wu, Z. G.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zhong, B. H.; Guo, X. D.; Sun, X. P. Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 2020, 8, 11493–11510.

32

Wang, H. G.; Yuan, S.; Ma, D. L.; Zhang, X. B.; Yan, J. M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.

33

Yue, H. L.; Wang, G. M.; Xu, Y. K.; Jin, R. C.; Wang, Q. Y.; Gao, S. M. Oxygen-deficient NiMoO4-xSx nanosheets perpendicularly grown on N-doped carbon nanosheets for high performance lithium-ion batteries. J. Power Sources 2020, 455, 227947.

34

Wang, Y.; Pan, Q.; Jia, K.; Wang, H. B.; Gao, J. J.; Xu, C. L.; Zhong, Y. J.; Alshehri, A. A.; Alzahrani, K. A.; Guo, X. D. et al. Ni2P nanosheets on carbon cloth: An efficient flexible electrode for sodium-ion batteries. Inorg. Chem. 2019, 58, 6579–6583.

35

An, L.; Feng, J. R.; Zhang, Y.; Wang, R.; Liu, H. W.; Wang, G. C.; Cheng, F. Y.; Xi, P. X. Epitaxial heterogeneous interfaces on N-NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Adv. Funct. Mater. 2019, 29, 1805298.

36

Ghosh, D.; Giri, S.; Das, C. K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale 2013, 5, 10428–10437.

37

Xing, Z.; Kong, W. H.; Wu, T. W.; Xie, H. T.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Sun, X. P. Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3. ACS Sustainable Chem. Eng. 2019, 7, 12692–12696.

38

Zhao, D.; Qin, J. W.; Zheng, L. R.; Cao, M. H. Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode. Chem. Mater. 2016, 28, 4180–4190.

39

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

40

Pan, Q.; Chen, H.; Wu, Z. G.; Wang, Y.; Zhong, B. H.; Xia, L.; Wang, H. Y.; Cui, G. W.; Guo, X. D.; Sun, X. P. Nanowire of WP as a high- performance anode material for sodium‐ion batteries. Chem. –Eur. J. 2019, 25, 971–975.

41

Wang, Q.; He, H. N.; Luan, J. Y.; Tang, Y. G.; Huang, D.; Peng, Z. G.; Wang, H. Y. Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochim. Acta 2019, 309, 242–252.

42

Zhang, Y. H.; Dai, R. Y.; Hu, S. R. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2. Phys. Chem. Chem. Phys. 2017, 19, 7307–7315.

43

Wang, B. B.; Wang, G.; Cheng, X. M.; Wang, H. Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem. Eng. J. 2016, 306, 1193–1202.

44

Sun, Y. X.; Wang, J.; Zhao, B. T.; Cai, R.; Ran, R.; Shao, Z. P. Binder- free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. J. Mater. Chem. A 2013, 1, 4736–4746.

45

Liu, S. D.; Lee, S. C.; Patil, U. M.; Ray, C.; Sankar, K. V.; Zhang, K.; Kundu, A.; Kang, S.; Park, J. H.; Jun, S. C. Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J. Mater. Chem. A 2017, 5, 4543–4549.

46

Meduri, P.; Clark, E.; Kim, J. H.; Dayalan, E.; Sumanasekera, G. U.; Sunkara, M. K. MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett. 2012, 12, 1784–1788.

47

Cho, J. S.; Lee, S. Y.; Ju, H. S.; Kang, Y. C. Synthesis of NiO nanofibers composed of hollow nanospheres with controlled sizes by the nanoscale kirkendall diffusion process and their electrochemical properties. ACS Appl. Mater. Interfaces 2015, 7, 25641–25647.

48

Wu, J.; Yin, W. J.; Liu, W. W.; Guo, P.; Liu, G. B.; Liu, X. C.; Geng, D. S.; Lau, W. M.; Liu, H.; Liu, L. M. High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes as a binder-free anode for lithium ion batteries. J. Mater. Chem. A 2016, 4, 10940–10947.

49

Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

50

Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

51

Zhang, J.; Chen, Y. L.; Chu, R. X.; Jiang, H.; Zeng, Y. B.; Zhang, Y.; Huang, N. M.; Guo, H. Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J. Alloys Compd. 2019, 787, 1051–1062.

52

Wang, Y.; Wu, C. J.; Wu, Z. G.; Cui, G. W.; Xie, F. Y.; Guo, X. D.; Sun, X. P. FeP nanorod arrays on carbon cloth: A high-performance anode for sodium-ion batteries. Chem. Commun. 2018, 54, 9341–9344.

53

Cao, D. W.; Kang, W. P.; Wang, W. H.; Sun, K. A.; Wang, Y. Y.; Ma, P.; Sun, D. F. Okra-like Fe7S8/C@ZnS/N-C@C with core-double-shelled structures as robust and high-rate sodium anode. Small 2020, 16, 1907641.

54

Liu, P.; Han, J.; Zhu, K. J.; Dong, Z. H.; Jiao, L. F. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium- ion storage. Adv. Energy Mater. 2020, 10, 2000741.

55

Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P‑doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

File
12274_2021_3455_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2021
Revised: 13 March 2021
Accepted: 15 March 2021
Published: 24 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21878195 and U20A20145), the Scientific and technological achievement transformation project of Sichuan Science and Technology Department (No. 21ZHSF0111), and Shanghai Scientific and Technological Innovation Project (No. 18JC1410604).

Return