Journal Home > Volume 15 , Issue 1

Inorganic luminescent nanocrystals (NCs) doped with main-group ns2-metal ions have evoked tremendous interest in many technological fields owing to their superior optical properties. Herein, we report a new class of luminescent nanoprobes based on 5s2-metal Sb3+-doped CaS NCs that are excitable by using a near ultraviolet light-emitting diode. The optical properties and excited-state dynamics of Sb3+ in CaS NCs are comprehensively surveyed through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopies. Owing to the strong electron–phonon coupling of Sb3+ in CaS NCs, Sb3+ ions experience a dynamic Jahn-Taller distortion on the excited state, which results in bright green PL of Sb3+ with a broad emission band, a large Stokes shift, and a high PL quantum yield up to 17.3%. By taking advantage of the intense PL of Sb3+, we show in proof-of-concept experiments the application of biotinylated CaS: Sb3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging and zebrafish imaging with a high imaging contrast. These findings provide fundamental insights into the excited-state dynamics of Sb3+ in CaS NCs, thus laying a foundation for future design of novel and versatile luminescent nanoprobes via main-group ns2-metal doping.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A new class of luminescent nanoprobes based on main-group Sb3+ emitters

Show Author's information Chunguang Zhang1,2Meiran Zhang1Wei Zheng1,2,3( )Jiaojiao Wei1Shiteng Wang1Ping Huang1,2,3Xingwen Cheng1Tao Dai1Zhuo Chen1Xueyuan Chen1,2,3( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials and State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of SciencesFuzhou 350002 China
College of Chemistry and Materials Science Fujian Normal UniversityFuzhou 350007 China
Fujian Science Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China

Abstract

Inorganic luminescent nanocrystals (NCs) doped with main-group ns2-metal ions have evoked tremendous interest in many technological fields owing to their superior optical properties. Herein, we report a new class of luminescent nanoprobes based on 5s2-metal Sb3+-doped CaS NCs that are excitable by using a near ultraviolet light-emitting diode. The optical properties and excited-state dynamics of Sb3+ in CaS NCs are comprehensively surveyed through temperature-dependent steady-state and transient photoluminescence (PL) spectroscopies. Owing to the strong electron–phonon coupling of Sb3+ in CaS NCs, Sb3+ ions experience a dynamic Jahn-Taller distortion on the excited state, which results in bright green PL of Sb3+ with a broad emission band, a large Stokes shift, and a high PL quantum yield up to 17.3%. By taking advantage of the intense PL of Sb3+, we show in proof-of-concept experiments the application of biotinylated CaS: Sb3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging and zebrafish imaging with a high imaging contrast. These findings provide fundamental insights into the excited-state dynamics of Sb3+ in CaS NCs, thus laying a foundation for future design of novel and versatile luminescent nanoprobes via main-group ns2-metal doping.

Keywords: photoluminescence, bioimaging, nanoprobe, CaS, Sb3+, excited-state dynamics

References(59)

1

Wei, Y.; Xing, G. C.; Liu, K.; Li, G. G.; Dang, P. P.; Liang, S. S.; Liu, M.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light: Sci. Appl. 2019, 8, 15.

2

Jing, Y. Y.; Liu, Y.; Jiang, X. X.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals. Chem. Mater. 2020, 32, 5327–5334.

3

Han, P. G.; Luo, C.; Yang, S. Q.; Yang, Y.; Deng, W. Q.; Han, K. All- inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2% to 90%. Angew. Chem., Int. Ed. 2020, 59, 12709–12713.

DOI
4

Zeng, R. S; Zhang, L. L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q. L.; Zhou, W. C.; Zou, B. S. Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J. Phys. Chem. Lett. 2020, 11, 2053–2061.

5

Zhao, H.; Chordiya, K.; Leukkunen, P.; Popov, A.; Kahaly, M. U.; Kordas, K.; Ojala, S. Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res. 2021, 14, 1116–1125.

6

Xiao, G.; Yan, B. B.; Luo, Y. H.; Wen, J. X.; Fan, D. S.; Fu, X. H.; Chu, Y. S.; Zhang, J. Z.; Peng, G. D. Co-doping effect of lead or erbium upon the spectroscopic properties of bismuth doped optical fibres. J. Lumin. 2021, 230, 117726.

7

Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc, Y, La): A model system for the study of trivalent s2 ions. J. Phys. C: Solid State Phys. 1986, 19, 3263–3272.

8

Huang, P.; Zheng, W.; Gong, Z.; You, W.; Wei, J.; Chen, X. Rare earth ion- and transition metal ion-doped inorganic luminescent nanocrystals: From fundamentals to biodetection. Mater. Today Nano 2019, 5, 100031.

9

Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.

10

Marin, R.; Jaque, D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence. Chem. Rev. 2021, 121, 1425–1462.

11

Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3: Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.

12

Xu, H. Y.; Yu, W. J.; Pan, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3: Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.

13

Shi, H. L.; Han, D.; Chen, S. Y.; Du, M. H. Impact of metal ns2 lone pair on luminescence quantum efficiency in low-dimensional halide perovskites. Phys. Rev. Mater. 2019, 3, 034604.

14

Zhou, J.; Rong, X. M.; Zhang, P.; Molokeev, M. S.; Wei, P. J.; Liu, Q. L.; Zhang, X. W.; Xia, Z. G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv. Opt. Mater. 2019, 7, 1801435.

15

Huang, D. Y.; Dang, P. P.; Wei, Y.; Bai, B.; Lian, H. Z.; Zeng, Q. G.; Lin, J. A deep-red-emitting Bi3+/Mn4+-doped CaLi6La2Nb2O12 phosphor: Luminescence and energy transfer properties. Mater. Res. Bull. 2020, 124, 110743.

16

Li, G. G.; Lin, J. Recent progress in low-voltage cathodoluminescent materials: Synthesis, improvement and emission properties. Chem. Soc. Rev. 2014, 43, 7099–7131.

17

Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res. 2019, 12, 1894–1899.

18

Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1–xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

19

Dang, P. P.; Liu, D. J.; Li, G. G.; Kheraif, A. A. A.; Lin, J. Recent advances in bismuth ion-doped phosphor materials: Structure design, tunable photoluminescence properties, and application in white LEDs. Adv. Opt. Mater. 2020, 8, 1901993.

20

Bednarkiewicz, A.; Marciniak, L.; Carlos, L. D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421.

21

Bi, H. T.; He, F.; Dong, Y. S.; Yang, D.; Dai, Y. L.; Xu, L. G.; Lv, R. C.; Gai, S. L.; Yang, P. P.; Lin, J. Bismuth nanoparticles with "light" property served as a multifunctional probe for X-ray computed tomography and fluorescence imaging. Chem. Mater. 2018, 30, 3301–3307.

22

Zhou, Y. D.; Feng, W.; Qian, X. Q.; Yu, L. D.; Han, X. G.; Fan, G. L.; Chen, Y.; Zhu, J. Construction of 2D antimony(Ⅲ) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Appl. Mater. Interfaces 2019, 11, 19712–19723.

23

Duo, Y. H.; Huang, Y. Y.; Liang, W. Y.; Yuan, R. M.; Li, Y.; Chen, T. F.; Zhang, H. Ultraeffective cancer therapy with an antimonene-based X-ray radiosensitizer. Adv. Funct. Mater. 2020, 30, 1906010.

24

Shahbazi, M. A.; Faghfouri, L.; Ferreira, M. P. A.; Figueiredo, P.; Maleki, H.; Sefat, F.; Hirvonen, J.; Santos, H. A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 2020, 49, 1253–1321.

25

Yu, X. J.; Liu, X. Y.; Yang, K.; Chen, X. Y.; Li, W. W. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: A materials perspective. ACS Nano 2021, 15, 2038–2067.

26

Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

27

Pham-Thi, M. Rare-earth calcium sulfide phosphors for cathode-ray tube displays. J. Alloys Compd. 1995, 225, 547–551.

28

Sun, X. L.; Hong, G. Y.; Dong, X. Y.; Xiao, D.; Zhang, G. L.; Tang, G. Q.; Chen, W. J. Study of energy transfer between rare earth ions in CaS host by photoluminescence spectra. J. Phys. Chem. Solids 2001, 62, 807–810.

29

Guo, C. F.; Huang, D. X.; Su, Q. Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng.: B 2006, 130, 189–193.

30

Burbano, D. C. R.; Sharma, S. K.; Dorenbos, P.; Viana, B.; Capobianco, J. A. Persistent and photostimulated red emission in CaS: Eu2+, Dy3+ nanophosphors. Adv. Opt. Mater. 2015, 3, 551–557.

31

Wang, J. K.; Zhu, Y. L.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Eu, Sm, Mn- doped CaS nanoparticles with 59.3% upconversion-luminescence quantum yield: Enabling ultrasensitive and facile smartphone-based sulfite detection. Anal. Chem. 2018, 90, 8658–8664.

32

Wang, J. K.; He, N.; Zhu, Y. L.; An, Z. B.; Chen, P.; Grimes, C. A.; Nie, Z.; Cai, Q. Y. Highly-luminescent Eu, Sm, Mn-doped CaS up/down conversion nano-particles: Application to ultra-sensitive latent fingerprint detection and in vivo bioimaging. Chem. Commun. 2018, 54, 591–594.

33

Yamashita, N. Luminescence centers of Ca (S: Se) phosphors activated with impurity ions having s2 configuration. I. Ca(S: Se): Sb3+ phosphors. J. Phys. Soc. Jpn. 1973, 35, 1089–1097.

34

Zhang, M. S.; Zang, L. N. Rapid synthesis of CaS: Ce3+, Sb3+ phosphor with submicron-scale by microwave radiation method and its luminescence. Rare Metal Mat. Eng. 2002, 31, 69–72.

35

Smet, P. F.; Moreels, I.; Hens, Z.; Poelman, D. Luminescence in sulfides: A rich history and a bright future. Materials 2010, 3, 2834–2883.

36

Raubach, C. W.; Gouveia, A. F.; de Santana, Y. V. B.; Varela, J. A.; Ferrer, M. M.; Li, M. S.; Longo, E. Towards controlled synthesis and better understanding of blue shift of the CaS crystals. J. Mater. Chem. C 2014, 2, 2743–2750.

37

Zhang, M. R.; Zheng, W.; Liu, Y.; Huang, P.; Gong, Z. L.; Wei, J. J.; Gao, Y.; Zhou, S. Y.; Li, X. J.; Chen, X. Y. A new class of blue-LED-excitable NIR-Ⅱ luminescent nanoprobes based on lanthanide-doped CaS nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 9556–9560.

38

Zhao, Y. M.; Rabouw, F. T.; van Puffelen, T.; van Walree, C. A.; Gamelin, D. R.; de Mello Donegá, C.; Meijerink, A. Lanthanide-doped CaS and SrS luminescent nanocrystals: A single-source precursor approach for doping. J. Am. Chem. Soc. 2014, 136, 16533–16543.

39

Burbano, D. C. R.; Rodríguez, E. M.; Dorenbos, P.; Bettinelli, M.; Capobianco, J. A. The near-IR photo-stimulated luminescence of CaS: Eu2+/Dy3+ nanophosphors. J. Mater. Chem. C 2014, 2, 228–231.

40

Gao, Y.; Li, R. F.; Zheng, W.; Shang, X. Y.; Wei, J. J.; Zhang, M. R.; Xu, J.; You, W. W.; Chen, Z.; Chen, X. Y. Broadband NIR photostimulated luminescence nanoprobes based on CaS: Eu2+, Sm3+ nanocrystals. Chem. Sci. 2019, 10, 5452–5460.

41

Virdi, G. S.; Singh, N.; Nath, N. Photoluminescence of ion-implanted phosphors. Pramana 1988, 31, 309–312.

42

Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

43

Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.

44

Asano, S.; Yamashita, N. Luminescence of Sb3+ centers in MgS phosphors. J. Phys. Soc. Jpn. 1980, 49, 2231–2235.

45

Donker, H.; Yamashita, N.; Smit, W. M. A.; Blasse, G. Luminescence decay times of the Sb3+, Pb2+, and Bi3+ ions in alkaline-earth sulfides. Phys. Status Solidi (B) 1989, 156, 537–544.

46

Yamashita, N.; Sasaki, Y. I.; Nakamura, K. Photoluminescence of Sb3+ centers in SrS and SrSe. Jpn. J. Appl. Phys. 1992, 31, 2791–2797.

47

He, Z. Y.; Wang, Y. S.; Sun, L.; Xu, X. R. Optical absorption studies on the trapping states of CaS: Eu, Sm. J. Phys.: Condens. Matter 2001, 13, 3665–3675.

48

Oomen, E. W. J. L.; Smit, W. M. A.; Blasse, S. G. Jahn-Teller effect in the Sb3+ emission in zircon-structured phosphates. Chem. Phys. Lett. 1984, 112, 547–550.

49

Weidner, M.; Osvet, A.; Schierning, G.; Batentschuka, M.; Winnackera, A. Influence of dopant compounds on the storage mechanism of CaS: Eu2+, Sm3+. J. Appl. Phys. 2006, 100, 073701.

50

Huang, B. L. Native point defects in CaS: Focus on intrinsic defects and rare earth ion dopant levels for up-converted persistent luminescence. Inorg. Chem. 2015, 54, 11423–11440.

51

Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 2017, 10, 1840–1846.

52

Miyakawa, T.; Dexter, D. L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B 1970, 1, 2961.

53

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room- temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

54

Zhang, W.; Wei, J. J.; Gong, Z. L.; Huang, P.; Xu, J.; Li, R. F.; Yu, S. H.; Cheng, X. W.; Zheng, W.; Chen, X. Y. Unveiling the excited-state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals. Adv. Sci. 2020, 7, 2002210.

55

Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.

56

Ellervee, A. F. Luminescence of Pb2+ and Bi3 + centres in alkali-earth sulphides and oxides. Phys. Status Solidi (B) 1977, 82, 91–98.

57

Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem. 2010, 21, 979–987.

58

Wei, J. J.; Lian, W.; Zheng, W.; Shang, X. Y.; Zhang, M. R.; Dai, T.; Chen, X. Y. Sub-10 nm lanthanide-doped SrFCl nanoprobes: Controlled synthesis, optical properties and bioimaging. J. Rare Earths 2019, 37, 691–698.

59

Wei, J. J.; Zheng, W.; Shang, X. Y.; Li, R. F.; Huang, P.; Liu, Y.; Gong, Z. L.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing. Sci. China Mater. 2019, 62, 130–137.

File
12274_2021_3454_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 February 2021
Revised: 15 March 2021
Accepted: 15 March 2021
Published: 03 June 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the Science and Technology Cooperation Fund between Chinese and Australian Governments (No. 2017YFE0132300), the Strategic Priority Research Program of the CAS (No. XDB20000000), the National Natural Science Foundation of China (Nos. 11774345, 12074379, 21771185, 21875250, and 11904365), the CAS/SAFEA International Partnership Program for Creative Research Teams, Natural Science Foundation of Fujian Province (No. 2020I0037), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No. 2021ZR125).

Return