Journal Home > Volume 15 , Issue 1

Oxygen evolution reaction (OER) is crucial for hydrogen production as well as other energy storage technologies. CoFe-layered double hydroxide (CoFe-OH) has been widely considered as one of the most efficient electrocatalysts for OER in basic aqueous solution. However, it still suffers from low activity in neutral electrolyte. This paper describes partially oxidized CoFe-OH (PO-CoFe-OH) with enhanced covalency of M-O bonds and displays enhanced OER performance under mild condition. Mechanism studies reveal the suitably enhanced M-O covalency in PO-CoFe-OH shifts the OER mechanism to lattice oxygen oxidation mechanism and also promotes the rate-limiting deprotonation, providing superior OER performance. It just requires the overpotentials of 186 and 365 mV to drive the current density densities of 1 and 10 mA·cm−2 in 0.1 M KHCO3 aqueous solution (pH = 8.3), respectively. It provides a new process for rational design of efficient catalysts for water oxidation in mild conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution

Show Author's information Dazhong Zhong1,§Tan Li2,§Dong Wang1Lina Li3Jiancheng Wang4Genyan Hao1Guang Liu1Qiang Zhao1( )Jinping Li1,4( )
College of Chemistry and Chemical Engineering, Taiyuan University of TechnologyShanxi Key Laboratory of Gas Energy Efficient and Clean UtilizationTaiyuan030024China
School of Environment and EnergySouth China University of TechnologyGuangzhou51006China
Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteShanghai200000China
Key Laboratory of Coal Science and Technology, Taiyuan University of TechnologyMinistry of Education and Shanxi ProvinceTaiyuan030024China

§Dazhong Zhong and Tan Li contributed equally to this work.

Abstract

Oxygen evolution reaction (OER) is crucial for hydrogen production as well as other energy storage technologies. CoFe-layered double hydroxide (CoFe-OH) has been widely considered as one of the most efficient electrocatalysts for OER in basic aqueous solution. However, it still suffers from low activity in neutral electrolyte. This paper describes partially oxidized CoFe-OH (PO-CoFe-OH) with enhanced covalency of M-O bonds and displays enhanced OER performance under mild condition. Mechanism studies reveal the suitably enhanced M-O covalency in PO-CoFe-OH shifts the OER mechanism to lattice oxygen oxidation mechanism and also promotes the rate-limiting deprotonation, providing superior OER performance. It just requires the overpotentials of 186 and 365 mV to drive the current density densities of 1 and 10 mA·cm−2 in 0.1 M KHCO3 aqueous solution (pH = 8.3), respectively. It provides a new process for rational design of efficient catalysts for water oxidation in mild conditions.

Keywords: oxygen evolution reaction, lattice oxygen oxidation, metal-oxygen covalency, neutral

References(62)

1

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.

2

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120-14136.

3

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

4

Ledendecker, M.; Geiger, S.; Hengge, K.; Lim, J.; Cherevko, S.; Mingers, A. M.; Göhl, D.; Fortunato, G. V.; Jalalpoor, D.; Schüth, F. et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Res. 2019, 12, 2275-2280.

5

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen- evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

6

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501-16509.

7

Dincă, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen- evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 10337-10341.

8

Yang, L. B.; Liu, D. N.; Hao, S.; Kong, R. M.; Asiri, A. M.; Zhang, C. X.; Sun, X. P. A cobalt-borate nanosheet array: An efficient and durable non-noble-metal electrocatalyst for water oxidation at near neutral pH. J. Mater. Chem. A 2017, 5, 7305-7308.

9

Cui, L.; Qu, F. L.; Liu, J. Q.; Du, G.; Asiri, A. M.; Sun, X. P. Interconnected network of core-shell CoP@CoBiPi for efficient water oxidation electrocatalysis under near neutral conditions. ChemSusChem 2017, 10, 1370-1374.

10

Ji, X. Q.; Cui, L.; Liu, D. N.; Hao, S.; Liu, J. Q.; Qu, F. L.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. A nickel-borate nanoarray: A highly active 3D oxygen-evolving catalyst electrode operating in near- neutral water. Chem. Commun. 2017, 53, 3070-3073.

11

Shao, Y.; Xiao, X.; Zhu, Y. P.; Ma, T. Y. Single-crystal cobalt phosphate nanosheets for biomimetic oxygen evolution in neutral electrolytes. Angew. Chem. , Int. Ed. 2019, 58, 14599-14604.

12

Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

13

Xu, Y. T.; Ye, Z. M.; Ye, J. W.; Cao, L. M.; Huang, R. K.; Wu, J. X.; Zhou, D. D.; Zhang, X. F.; He, C. T.; Zhang, J. P. et al. Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media. Angew. Chem. , Int. Ed. 2019, 58, 139-143.

14

Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 138, 4229-4236.

15

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327-1331.

16

Yuan, Z. J.; Bak, S. M.; Li, P. S.; Jia, Y.; Zheng, L. R.; Zhou, Y.; Bai, L.; Hu, E. Y.; Yang, X. Q.; Cai, Z. et al. Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH. ACS Energy Lett. 2019, 4, 1412-1418.

17

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

18

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

19

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

20

Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445-453.

21

Huang, M. Q.; Liu, W. W.; Wang, L.; Liu, J. W.; Chen, G. Y.; You, W. B.; Zhang, J.; Yuan, L. J.; Zhang, X. F.; Che, R. C. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810-817.

22

Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79-85.

23

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 5867-5871.

24

Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Luo, D.; Xie, L. X.; Yu, F.; Bao, J. M.; Li, Y.; Yu, Y. et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy 2017, 41, 327-336.

25

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

26

Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019-4047.

27

Du, P. W.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy Environ. Sci. 2012, 5, 6012-6021.

28

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. , Int. Ed. 2015, 54, 9351-9355.

29

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329-338.

30

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748-7759.

31

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925-931.

32

Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288-2295.

33

Trześniewski, B. J.; Diaz-Morales, O.; Vermaas, D. A.; Longo, A.; Bras, W.; Koper, M. T. M.; Smith, W. A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J. Am. Chem. Soc. 2015, 137, 15112-15121.

34

Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639-2645.

35

Görlin, M.; de Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070-2082.

36

Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711-719.

37

Zhong, D. Z.; Zhang, L.; Li, C. C.; Li, D. D.; Wei, C. C.; Zhao, Q.; Li, J. P.; Gong, J. L. Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. J. Mater. Chem. A 2018, 6, 16180-16817.

38

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567-570.

39

Singh, V.; Kosa, M.; Majhi, K.; Major, D. T. Putting DFT to the test: A first-principles study of electronic, magnetic, and optical properties of Co3O4. J. Chem. Theory Comput. 2015, 11, 64-72.

40

Pack, J. D.; Monkhorst, H. J.; Freeman, D. L. Lithium crystal properties from high-quality Hartree-Fock wave functions. Solid State Commun. 1979, 29, 723-725.

41

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

42

Chadi, D. J. Special points for Brillouin-zone integrations. Phys. Rev. B 1977, 16, 1746-1747.

43

Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843-2850.

44

Yang, R.; Zhou, Y. M.; Xing, Y. Y.; Li, D.; Jiang, D. L.; Chen, M.; Shi, W. D.; Yuan, S. Q. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B Environ. 2019, 253, 131-139.

45

Liu, L.; Jiang, Z. Q.; Fang, L.; Xu, H. T.; Zhang, H. J.; Gu, X.; Wang, Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 27736-27744.

46

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299-3309.

47

Ma, L. N.; Zhou, H.; Xu, M.; Hao, P. P.; Kong, X. G.; Duan, H. H. Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode. Chem. Sci. 2021, 12, 938-945.

48

Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490-2497.

49

Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching- doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped cofe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

50

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3867-3879.

51

Zhao, J. W.; Li, C. F.; Shi, Z. X.; Guan, J. L.; Li, G. R. Boosting lattice oxygen oxidation of perovskite to efficiently catalyze oxygen evolution reaction by FeOOH decoration. Research 2020, 2020, 6961578.

52

Frost, R. L.; Weier, M. L.; Kloprogge, J. T. Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. J. Raman Spectrosc. 2003, 34, 760-768.

53

Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 2019, 150, 041718.

54

Li, Z. H.; Duan, H. H.; Shao, M. F.; Li, J. B.; O'Hare, D.; Wei, M.; Wang, Z. L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chem 2018, 4, 2168-2179.

55

Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246-254.

56

Chen, J.; Xu, G. Z.; Wang, C.; Zhu, K.; Wang, H. X.; Yan, S. C.; Yu, Z. T.; Zou, Z. G. High-performance and stable silicon photoanode modified by crystalline Ni@amorphous Co core-shell nanoparticles. ChemCatChem 2018, 10, 5025-5031.

57

Zhang, M.; de Respinis, M.; Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 2014, 6, 362-367.

58

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457-465.

59

Ye, Y. F.; Thorne, J. E.; Wu, C. H.; Liu, Y. S.; Du, C.; Jang, J. W.; Liu, E.; Wang, D. W.; Guo, J. H. Strong O 2p-Fe 3d hybridization observed in solution-grown hematite films by soft X-ray spectroscopies. J. Phys. Chem. B 2018, 122, 927-932.

60

Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.

61

Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the "fast" iron sites. J. Am. Chem. Soc. 2016, 138, 313-318.

DOI
62

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.

File
12274_2021_3451_MOESM1_ESM.pdf (9.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2020
Revised: 10 March 2021
Accepted: 11 March 2021
Published: 24 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 21878202, 21975175, and U1932119), the research project supported by Shanxi Scholarship Council of China (No. 2017-041), the Natural Science Foundation of Shanxi Province (No. 201801D121052), and the National Key Basic Research Program of China (No. 2017YFA0403402).

Return