Journal Home > Volume 15 , Issue 1

Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease. Although there are a variety of treatments for RA, the substantial clinical therapies are still limited to disease-modifying anti-rheumatic drugs (DMARD), which would induce obvious side-effect in patients after long-term administration. Herein, an uncomplicated drug-induced self-assembly strategy was proposed to fabricate enzyme-loaded albumin nanomedicine. The hydrophobic drug methotrexate (MTX) could induce self-assembly of superoxide dismutase (SOD) and human serum albumin (HSA) to form HSA-SOD-MTX nanoparticle. After intravenous injection, dual-modal imaging including fluorescence imaging or single-photon emission computed tomography (SPECT)/CT imaging exhibits high accumulation of cyanine 5.5 (Cy5.5) or 125I labeled HSA-SOD-MTX nanoparticles in the joints of collagen-induced arthritis (CIA) mice. Importantly, using the synergy therapy of SOD enzyme to scavenge the reactive oxygen species (ROS) and MTX to suppress inflammation, HSA-SOD-MTX nanoparticles exhibit excellent therapeutic efficiency of RA in CIA mice compared with the other groups. Micro-CT and clinical arthritis score of RA mice further demonstrate that RA symptoms of mice treated with HSA- SOD-MTX nanoparticles is significantly relived, which was further demonstrated by the histological analysis and the inflammatory factors measurement. The synergy therapy of inflammation by MTX and SOD enzyme based on HSA-SOD-MTX nanoparticles show excellent therapeutic effects of RA without inducing obvious side effects. Therefore, our strategy may further promote the highly efficient therapy of RA using SOD enzyme to scavenge the ROS and decreasing the side-effect of MTX, which may provide the reference for clinical RA treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Albumin mediated reactive oxygen species scavenging and targeted delivery of methotrexate for rheumatoid arthritis therapy

Show Author's information Jing Zhong1,§Qin Zhang2,§Zheng Zhang1Kexin Shi1Yuanchen Sun1Teng Liu1Jun Lin2( )Kai Yang1( )
State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu higher Education Institutions, Soochow UniversitySuzhou215123China
Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhou215006China

§Jing Zhong and Qin Zhang contributed equally to this work.

Abstract

Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease. Although there are a variety of treatments for RA, the substantial clinical therapies are still limited to disease-modifying anti-rheumatic drugs (DMARD), which would induce obvious side-effect in patients after long-term administration. Herein, an uncomplicated drug-induced self-assembly strategy was proposed to fabricate enzyme-loaded albumin nanomedicine. The hydrophobic drug methotrexate (MTX) could induce self-assembly of superoxide dismutase (SOD) and human serum albumin (HSA) to form HSA-SOD-MTX nanoparticle. After intravenous injection, dual-modal imaging including fluorescence imaging or single-photon emission computed tomography (SPECT)/CT imaging exhibits high accumulation of cyanine 5.5 (Cy5.5) or 125I labeled HSA-SOD-MTX nanoparticles in the joints of collagen-induced arthritis (CIA) mice. Importantly, using the synergy therapy of SOD enzyme to scavenge the reactive oxygen species (ROS) and MTX to suppress inflammation, HSA-SOD-MTX nanoparticles exhibit excellent therapeutic efficiency of RA in CIA mice compared with the other groups. Micro-CT and clinical arthritis score of RA mice further demonstrate that RA symptoms of mice treated with HSA- SOD-MTX nanoparticles is significantly relived, which was further demonstrated by the histological analysis and the inflammatory factors measurement. The synergy therapy of inflammation by MTX and SOD enzyme based on HSA-SOD-MTX nanoparticles show excellent therapeutic effects of RA without inducing obvious side effects. Therefore, our strategy may further promote the highly efficient therapy of RA using SOD enzyme to scavenge the ROS and decreasing the side-effect of MTX, which may provide the reference for clinical RA treatment.

Keywords: rheumatoid arthritis, albumin, superoxide dismutase, methotrexate, single-photon emission computed tomography (SPECT)/CT

References(37)

1

Smolen, J. S.; Aletaha, D.; Barton, A.; Burmester, G. R.; Emery, P.; Firestein, G. S.; Kavanaugh, A.; McInnes, I. B.; Solomon, D. H.; Strand, V. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001.

2

Schett, G.; Gravallese, E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 2012, 8, 656-664.

3

McInnes, I. B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205-2219.

4

Oliveira, I. M.; Gonçalves, C.; Reis, R. L.; Oliveira, J. M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Res. 2018, 11, 4489-4506.

5

Elshabrawy, H. A.; Essani, A. E.; Szekanecz, Z.; Fox, D. A.; Shahrara, S. TLRs, future potential therapeutic targets for RA. Autoimmun. Rev. 2017, 16, 103-113.

6

Alivernini, S.; MacDonald, L.; Elmesmari, A.; Finlay, S.; Tolusso, B.; Gigante, M. R.; Petricca, L.; Di Mario, C.; Bui, L.; Perniola, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 2020, 26, 1295- 1306.

7

Udalova, I. A.; Mantovani, A.; Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 2016, 12, 472-485.

8

Smolen, J. S.; Aletaha, D.; Koeller, M.; Weisman, M. H.; Emery, P. New therapies for treatment of rheumatoid arthritis. Lancet 2007, 370, 1861-1874.

9

Hoes, J. N.; Jacobs, J. W. G.; Buttgereit, F.; Bijlsma, W. J. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat. Rev. Rheumatol. 2010, 6, 693-702.

10

Khan, Z. A.; Tripathi, R.; Mishra, B. Methotrexate: A detailed review on drug delivery and clinical aspects. Exp. Opin. Drug Deliv. 2012, 9, 151-169.

11

Smolen, J. S.; Aletaha, D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat. Rev. Rheumatol. 2015, 11, 276-289.

12

Burmester, G. R.; Pope, J. E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338-2348.

13

Che, M. X.; Wang, R.; Li, X. X.; Wang, H. Y.; Zheng, X. F. S. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 2016, 21, 143-149.

14

Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C. J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592-607.

15

Yu, D. H.; Yi, J. K.; Yuh, H. S.; Park, S. J.; Kim, H. J.; Bae, K. B.; Ji, Y. R.; Kim, N. R.; Park, S. J.; Kim, D. H. et al. Over-expression of extracellular superoxide dismutase in mouse synovial tissue attenuates the inflammatory arthritis. Exp. Mol. Med. 2012, 44, 529-535.

16

Gao, X.; Ma, Y. Q.; Zhang, G. J.; Tang, F. Y.; Zhang, J. J.; Cao, J. C.; Liu, C. H. Targeted elimination of intracellular reactive oxygen species using nanoparticle-like chitosan-superoxide dismutase conjugate for treatment of monoiodoacetate-induced osteoarthritis. Int. J. Pharm. 2020, 590, 119947.

17

Jiang, Y. H.; Brynskikh, A. M.; S-Manickam, D.; Kabanov, A. V. SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J. Control. Release 2015, 213, 36-44.

18

Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321-334.

19

Garbayo, E.; Pascual-Gil, S.; Rodríguez-Nogales, C.; Saludas, L.; de Mendoza, A. E. H.; Blanco-Prieto, M. J. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1637.

20

Liao, J. F.; Jia, Y. P.; Wu, Y. Z.; Shi, K.; Yang, D. W.; Li, P.; Qian, Z. Y. Physical-, chemical-, and biological-responsive nanomedicine for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1581.

21

Zeng, Z. L.; Pu, K. Y. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv. Funct. Mater. 2020, 30, 2004397.

22

Golombek, S. K.; May, J. N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17-38.

23

Li, Y. C.; Xie, J.; Um, W.; You, D. G.; Kwon, S.; Zhang, L. B.; Zhu, J. T.; Park, J. H. Sono/photodynamic nanomedicine-elicited cancer immunotherapy. Adv. Funct. Mater. 2020, 31, 2008061.

24

Liu, Y. J.; Sun, D. D.; Fan, Q.; Ma, Q. L.; Dong, Z. L.; Tao, W. W.; Tao, H. Q.; Liu, Z.; Wang, C. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res. 2020, 13, 564-569.

25

Prasad, L. K.; O'Mary, H.; Cui, Z. R. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 2015, 10, 2063- 2074.

26

Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205-1219.

27

Wang, Q.; Jiang, H.; Li, Y.; Chen, W. F.; Li, H. M.; Peng, K.; Zhang, Z. R.; Sun, X. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials 2017, 122, 10-22.

28

Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108-124.

29

Shin, J. M.; Kim, S. H.; Thambi, T.; You, D. G.; Jeon, J.; Lee, J. O.; Chung, B. Y.; Jo, D. G.; Park, J. H. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem. Commun. 2014, 50, 7632-7635.

30

Lin, X.; Xie, J.; Niu, G.; Zhang, F.; Gao, H. K.; Yang, M.; Quan, Q. M.; Aronova, M. A.; Zhang, G. F.; Lee, S. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 2011, 11, 814-819.

31

Tian, L. L.; Chen, Q.; Yi, X.; Wang, G. L.; Chen, J.; Ning, P.; Yang, K.; Liu, Z. Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 2017, 7, 614-623.

32

Chen, Q.; Chen, J. W.; Liang, C.; Feng, L. Z.; Dong, Z. L.; Song, X. J.; Song, G. S.; Liu, Z. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J. Control. Release 2017, 263, 79-89.

33

Liu, L.; Hu, F. L.; Wang, H.; Wu, X. L.; Eltahan, A. S.; Stanford, S.; Bottini, N.; Xiao, H. H.; Bottini, M.; Guo, W. S. et al. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano 2019, 13, 5036-5048.

34

Mi, F. L.; Burnouf, T.; Lu, S. Y.; Lu, Y. J.; Lu, K. Y.; Ho, Y. C.; Kuo, C. Y.; Chuang, E. Y. Self-targeting, immune transparent plasma protein coated nanocomplex for noninvasive photothermal anticancer therapy. Adv. Healthc. Mater. 2017, 6, 1700181.

35

Cornish, A. L.; Campbell, I. K.; McKenzie, B. S.; Chatfield, S.; Wicks, I. P. G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 2009, 5, 554-559.

36

Karimian, M. S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017, 33, 55-63.

37

Haringman, J. J.; Smeets, T. J. M.; Reinders-Blankert, P.; Tak, P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis. 2006, 65, 294-300.

File
12274_2021_3449_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 January 2021
Revised: 09 March 2021
Accepted: 10 March 2021
Published: 13 April 2021
Issue date: January 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Nos. 31822022, U1932208, 31900986, and 81871789), the Natural Science Foundation of Jiangsu Province (Nos. BK20180094 and BK20180052), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return