Journal Home > Volume 14 , Issue 12

Owing to unprecedented merits such as high theoretical capacity, superior energy density and low cost, lithium-sulfur batteries (LSBs) show a bright future both in scientific and industrial areas. Whereas, the inherent issues, including highly insulating character, undesired shuttle behavior and lithium dendrites growth, are seriously impeding its practical usage. Here, a metal-organic-frameworks (MOFs) derived N, S co-doped carbon nanotube hollow architecture confining with CoS2 nanoparticles (CoS2/NSCNHF) modified separator is designed to surmount these obstacles. Compared with Celgard separator, this designed separator shows obviously enhanced flame retardancy, giving 73.1% and 53.0% reductions in peak heat release rate and total heat release, separately. Concretely, its hollow structure, conductive feature, electrocatalytic activity and Lewis acid-base interaction enable the efficient inhibition on shuttle behavior as well as boost in polysulfides conversion kinetics. The cell with modified separator delivers a high discharge capacity of 1, 284.5 mAh·g–1. After running for 100 cycles, a discharge capacity of 661.3 mAh·g–1 is remained. Markedly, the suppression on lithium dendrites growth is also observed, manifesting the enhanced battery safety. Overall, this work may shed light on the effective usage of MOFs-derived hierarchical composite in achieving LSBs with high electrochemical performance as well as safety.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries

Show Author's information Junling Wang1,2Wei Cai1Xiaowei Mu1Longfei Han1Na Wu1Can Liao1Yongchun Kan1( )Yuan Hu1( )
State Key Laboratory of Fire Science CAS Key Laboratory of Soft Matter Chemistry University of Science and Technology of China Hefei 230026 China
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control College of Safety Science and Engineering Nanjing Tech University Nanjing 211816 China

Abstract

Owing to unprecedented merits such as high theoretical capacity, superior energy density and low cost, lithium-sulfur batteries (LSBs) show a bright future both in scientific and industrial areas. Whereas, the inherent issues, including highly insulating character, undesired shuttle behavior and lithium dendrites growth, are seriously impeding its practical usage. Here, a metal-organic-frameworks (MOFs) derived N, S co-doped carbon nanotube hollow architecture confining with CoS2 nanoparticles (CoS2/NSCNHF) modified separator is designed to surmount these obstacles. Compared with Celgard separator, this designed separator shows obviously enhanced flame retardancy, giving 73.1% and 53.0% reductions in peak heat release rate and total heat release, separately. Concretely, its hollow structure, conductive feature, electrocatalytic activity and Lewis acid-base interaction enable the efficient inhibition on shuttle behavior as well as boost in polysulfides conversion kinetics. The cell with modified separator delivers a high discharge capacity of 1, 284.5 mAh·g–1. After running for 100 cycles, a discharge capacity of 661.3 mAh·g–1 is remained. Markedly, the suppression on lithium dendrites growth is also observed, manifesting the enhanced battery safety. Overall, this work may shed light on the effective usage of MOFs-derived hierarchical composite in achieving LSBs with high electrochemical performance as well as safety.

Keywords: lithium dendrites, metal-organic-frameworks, shuttle behavior, flame retardancy

References(70)

1

Wang, J. L.; Wu, N.; Han, L. F.; Liao, C.; Mu, X. W.; Kan, Y. C.; Hu, Y. Polyacrylonitrile@metal organic frameworks composite-derived heteroatoms doped carbon@encapsulated cobalt sulfide as superb sodium ion batteries anode. J. Colloid Interf. Sci. 2021, 581, 552-565.

2

Liang, K.; Marcus, K.; Zhang, S. F.; Zhou, L.; Li, Y. L.; De Oliveira, S. T.; Orlovskaya, N.; Sohn, Y. H.; Yang, Y. NiS2/FeS holey film as freestanding electrode for high-performance lithium battery. Adv. Energy Mater. 2017, 7, 1701309.

3

Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/ CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193-1197.

4

Li, W. D.; Wang, D. Z.; Song, Z. H.; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer- expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908-2917.

5

Yang, X. F.; Yan, N.; Zhou, W.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 15314-15323.

6

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673-2682.

7

Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115-1120.

8

Fu, Y.; Hu, J.; Wang, Q.; Lin, D. M.; Li, K. K.; Zhou, L. M. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium-sulfur batteries. Carbon 2019, 150, 76-84.

9

Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Erratum: Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7863.

10

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698-3705.

11

Chen, L.; Yang, W. W.; Liu, J. G.; Zhou, Y. Decorating CoSe2 hollow nanospheres on reduced graphene oxide as advanced sulfur host material for performance enhanced lithium-sulfur batteries. Nano Res. 2019, 12, 2743-2748.

12

Yuan, H. D.; Zhang, W. K.; Wang, J. G.; Zhou, G. M.; Zhuang, Z. Z.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y. et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 1-9.

13

Gao, H.; Lu, Q.; Liu, N. J.; Wang, X. H.; Wang, F. S. Facile preparation of an ultrathin sulfur-wrapped polyaniline nanofiber composite with a core-shell structure as a high performance cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 7215-7218.

14

Liang, X.; Zhang, M. G.; Kaiser, M. R.; Gao, X. W.; Konstantinov, K.; Tandiono, R.; Wang, Z. X.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 2015, 11, 587-599.

15

Oschmann, B.; Park, J.; Kim, C.; Char, K.; Sung, Y. E.; Zentel, R. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries. Chem. Mater. 2015, 27, 7011-7017.

16

Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Q. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205-210.

17

Zhen, M. M.; Zuo, X. T.; Wang, J.; Wang, C. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium- sulfur batteries. Nano Res. 2019, 12, 1017-1024.

18

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926-6931.

19

Rehman, S.; Gu, X. X.; Khan, K.; Mahmood, N.; Yang, W. L.; Huang, X. X.; Guo, S. J.; Hou, Y. L. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1502518.

20

Guo, D.; Ming, F. W.; Su, H.; Wu, Y. Q.; Wahyudi, W.; Li, M. L.; Hedhili, M. N.; Sheng, G.; Li, L. J.; Alshareef, H. N. et al. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy 2019, 61, 478-485.

21

Song, C. L.; Li, G. H.; Yang, Y.; Hong, X. J.; Huang, S.; Zheng, Q. F.; Si, L. P.; Zhang, M.; Cai, Y. P. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem. Eng. J. 2020, 381, 122701.

22

Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829-836.

23

Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, doi10.1007/s12274-020-3245-3.

24

Chung, S. H.; Manthiram, A. Bifunctional separator with a light- weight carbon-coating for dynamically and statically stable lithium- sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299-5306.

25

Chang, C. H.; Chung, S. H.; Manthiram, A. Effective stabilization of a high-loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators. Small 2016, 12, 174-179.

26

Chung, S. H.; Manthiram, A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. J. Phys. Chem. Lett. 2014, 5, 1978-1983.

27

Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim. Acta 2014, 129, 55-61.

28

Kaisar, N.; Abbas, S. A.; Ding, J.; Chen, H. A.; Pao, C. W.; Boopathi, K. M.; Mohapatra, A.; Chen, Y. T.; Wu, S. H.; Fang, J. et al. A lithium passivated MoO3 nanobelt decorated polypropylene separator for fast-charging long-life Li-S batteries. Nanoscale 2019, 11, 2892-2900.

29

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.

30

Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

31

Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2021, 14, 131-138.

32

Gao, X. T.; Xie, Y.; Zhu, X. D.; Sun, K. N.; Xie, X. M.; Liu, Y. T.; Yu, J. Y.; Ding, B. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 2018, 14, 1802443.

33

Yu, B. C.; Park, K.; Jang, J. H.; Goodenough, J. B. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium- sulfur battery. ACS Energy Lett. 2016, 1, 633-637.

34

Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Wang, H. B.; Wang, X. P.; Rao, G. F.; Wang, X. F.; Chen, B.; Xiong, J. Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy 2020, 68, 104373.

35

Han, L. F.; Wang, J. L.; Mu, X. W.; Wu, T.; Liao, C.; Wu, N.; Xing, W. Y.; Song, L.; Kan, Y. C.; Hu, Y. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes. J. Colloid Interf. Sci. 2021, 585, 596-604.

36

Liao, C.; Wang, W.; Han, L. F.; Mu, X. W.; Wu, N.; Wang, J. L.; Gui, Z.; Hu, Y.; Kan, Y. C.; Song, L. A flame retardant sandwiched separator coated with ammonium polyphosphate wrapped by SiO2 on commercial polyolefin for high performance safety lithium metal batteries. Appl. Mater. Today 2020, 21, 100793.

37

Wang, J. L.; Han, L. F.; Wu, N.; Zhang, Z. X.; Liao, C.; Wang, J. W.; Kan, Y. C.; Hu, Y. Strongly coupled metal-organic frameworks on layered bimetallic hydroxide derived N, S co-doped porous carbon frameworks embedding with CoS2 for energy storage. J. Power Sources 2020, 453, 227789.

38

Guo, W. W.; Nie, S. B.; Kalali, E. N.; Wang, X.; Wang, W.; Cai, W.; Song, L.; Hu, Y. Construction of SiO2@UiO-66 core-shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins. Compos. Part B Eng. 2019, 176, 107261.

39

Jiang, G. Y.; Zheng, N.; Chen, X.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309-1318.

40

Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res. 2017, 10, 2495-2507.

41

Benítez, A.; Caballero, A.; Morales, J.; Hassoun, J.; Rodríguez- Castellón, E.; Canales-Vázquez, J. J. N. R. Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Res. 2019, 12, 759-766.

42

He, L. X.; Wang, J. L.; Wang, B. B.; Wang, X.; Zhou, X.; Cai, W.; Mu, X. W.; Hou, Y. B.; Hu, Y.; Song, L. Large-scale production of simultaneously exfoliated and functionalized Mxenes as promising flame retardant for polyurethane. Compos. Part B Eng. 2019, 179, 107486.

43

Wang, J. L.; Wang, B. B.; Ma, C.; Xiao, Y. L.; Guo, W. W.; Cai, W.; Song, L.; Wang, X.; Hu, Y. Building of hierarchical structure of functionalized montmorillonite anchored with ZnO: Toward fabricating high-performance polyethylene composite. Appl. Clay Sci. 2020, 196, 105767.

44

Zhou, X.; Qiu, S. L.; Liu, J. J.; Zhou, M. T.; Cai, W.; Wang, J. L.; Chu, F. K.; Xing, W. Y.; Song, L.; Hu, Y. Construction of porous g-C3N4@PPZ tubes for high performance BMI resin with enhanced fire safety and toughness. Chem. Eng. J. 2020, 401, 126094.

45

Chu, F. K.; Ma, C.; Zhang, T.; Xu, Z. M.; Mu, X. W.; Cai, W.; Zhou, X.; Ma, S. C.; Zhou, Y. F.; Hu, W. Z. et al. Renewable vanillin- based flame retardant toughening agent with ultra-low phosphorus loading for the fabrication of high-performance epoxy thermoset. Compos. Part B Eng. 2020, 190, 107925.

46

Yuan, B. H.; Wang, Y.; Chen, G. Q.; Yang, F. Z.; Zhang, H. M.; Cao, C. R.; Zuo, B. Y. Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 2021, 403, 123645.

47

Tang, G.; Liu, X. L.; Zhou, L.; Zhang, P.; Deng, D.; Jiang, H. H. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Adv. Powder Technol. 2020, 31, 279-286.

48

Wang, J. L.; Ma, C.; Mu, X. M.; Cai, W.; Liu, L. X.; Zhou, X.; Hu, W. Z.; Hu, Y. Construction of multifunctional MoSe2 hybrid towards the simultaneous improvements in fire safety and mechanical property of polymer. J. Hazard. Mater. 2018, 352, 36-46.

49

Shi, Y. Q.; Liu, C.; Duan, Z. P.; Yu, B.; Liu, M. H.; Song, P. A. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 2020, 399, 125829.

50

Xiao, Y. L.; Ma, C.; Jin, Z. Y.; Wang, J. L.; He, L. X.; Mu, X. W.; Song, L.; Hu, Y. Functional covalent organic framework for exceptional Fe2+, Co2+ and Ni2+ removal: An upcycling strategy to achieve water decontamination and reutilization as smoke suppressant and flame retardant simultaneously. Chem. Eng. J. 2020, 127837.

51

Cai, W.; Feng, X. M.; Wang, B. B.; Hu, W. Z.; Yuan, B. H.; Hong, N. N.; Hu, Y. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chem. Eng. J. 2017, 316, 514-524.

52

Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

53

Jiang, M.; Wang, R. X.; Wang, K. L.; Gao, S.; Han, J.; Yan, J.; Cheng, S. J.; Jiang, K. Hierarchical porous Fe/N doped carbon nanofibers as host materials for high sulfur loading Li-S batteries. Nanoscale 2019, 11, 15156-15165.

54

Wang, J. L.; Ma, C.; Mu, X. W.; Zhou, X.; He, L. X.; Xiao, Y. L.; Song, L.; Hu, Y. Designing 3D ternary-structure based on SnO2 nano-particles anchored hollow polypyrrole microspheres interconnected with N, S co-doped graphene towards high-performance polymer composite. Chem. Eng. J. 2020, 402, 126221.

55

Wang, J. L.; Zhang, D. C.; Zhang, Y.; Cai, W.; Yao, C. X.; Hu, Y.; Hu, W. Z. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J. Hazard. Mater. 2019, 362, 482-494.

56

Peng, H. Y.; Wang, D.; Li, M.; Zhang, L. P.; Liu, M. M.; Fu, S. H. N-P-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber. Chem. Eng. J. 2019, 372, 873-885.

57

Mu, X. W.; Cai, W.; Xiao, Y. L.; He, L. X.; Zhou, X.; Wang, H. J.; Guo, W. W.; Xing, W. Y.; Song, L. A novel strategy to prepare COFs based BN co-doped carbon nanosheet for enhancing mechanical performance and fire safety to PVA nanocomposite. Compos. Part B Eng. 2020, 198, 108218.

58

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620-2630.

59

Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The "Goldilocks" principle. Adv. Energy Mater. 2016, 6, 1501636.

60

Chen, S. X.; Luo, J. H.; Li, N. Y.; Han, X. X.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187-195.

61

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.

62

Wang, J. T.; Zhai, P. F.; Zhao, T. K.; Li, M. J.; Yang, Z. H.; Zhang, H. Q.; Huang, J. J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 2019, 320, 134558.

63

Shao, H. Y.; Wang, W. K.; Zhang, H.; Wang, A. B.; Chen, X. N.; Huang, Y. Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium- sulfur battery. J. Power Sources 2018, 378, 537-545.

64

Liu, X. J.; Qian, T.; Liu, J.; Wang, M. F.; Chen, H. L.; Yan, C. L. High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Mater. 2019, 17, 260-265.

65

Song, J. X.; Yu, Z. X.; Xu, T.; Chen, S. R.; Sohn, H.; Regula, M.; Wang, D. H. Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 8623-8627.

66

Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280.

67

Zeng, P.; Huang, L. W.; Zhang, X. L.; Han, Y. M.; Chen, Y. G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement. Appl. Surf. Sci. 2018, 427, 242-252.

68

Wang, Z.; Feng, M.; Sun, H.; Li, G. R.; Fu, Q.; Li, H. B.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M. et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 2019, 59, 390-398.

69

Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X.; Zhang, Q.; Tu, J. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322.

70

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. 2017, 129, 7872-7876.

File
12274_2021_3446_MOESM1_ESM.pdf (4.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 December 2020
Revised: 23 February 2021
Accepted: 09 March 2021
Published: 10 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 51704269), Fundamental Research Funds for the Central Universities (No. WK2320000047) and the Fundamental Research Funds for the Central Universities (No. WK2320000039).

Return