Journal Home > Volume 14 , Issue 12

The source of activity of metal/metal oxides has always been an interesting, important but highly challenging research topic in heterogeneous catalysis. In CO oxidation reaction, this work clarifies dispersion and support dictated activities of Pt including single-atom (Pt1), 2.8 nm (PtNP-S) and 36 nm (PtNP-L) Pt supported on both reducible TiO2 and "inert" Al2O3 supports. The X-ray absorption fine structure (XAFS) shows that chemical state of Pt is affected by both dispersion and support: Pt1 presents fully oxidized state in both Pt1/TiO2 and Pt1/Al2O3; PtNP-S in PtNP-S/TiO2 appear nearly oxidized state while about half of Pt is metallic state in PtNP-S/Al2O3; PtNP-L in both PtNP-L/TiO2 and PtNP-L/Al2O3 exhibit metallic state. All the Pt species supported on TiO2 present much lower apparent activation barriers (Eapp) than that on Al2O3. Moreover, Pt1/TiO2 possesses dozen times of efficiency than PtNP-S/TiO2 although they have similar Eapp values. A truth is finally made clear that a reducible metal oxide with low oxygen vacancy formation energy is critical to endow Pt/metal oxide a high activity and the single-atom dispersion of Pt is the way to maximize the active sites of Pt/metal oxide.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation

Show Author's information Jiaojiao Song1,§Yixuan Yang1,§Shoujie Liu2,3Lei Li4Nan Yu2Yuteng Fan1Zhiming Chen1Long Kuai1( )Baoyou Geng2( )
School of Chemical and Environmental Engineering Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application Anhui Laboratory of Clean Catalytic Engineering Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu 241000 China
College of Chemistry and Materials Science The key Laboratory of Functional Molecular Solids Ministry of Education the Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002 China
Chemistry and Chemical Engineering of Guangdong LaboratoryShantou 515063 China
Chongqing Key Laboratory of Extraordinary Coordination Bond and Advanced Materials Techniques Yangtze Normal University Chongqing 408100 China

§ Jiaojiao Song and Yixuan Yang contributed equally to this work.

Abstract

The source of activity of metal/metal oxides has always been an interesting, important but highly challenging research topic in heterogeneous catalysis. In CO oxidation reaction, this work clarifies dispersion and support dictated activities of Pt including single-atom (Pt1), 2.8 nm (PtNP-S) and 36 nm (PtNP-L) Pt supported on both reducible TiO2 and "inert" Al2O3 supports. The X-ray absorption fine structure (XAFS) shows that chemical state of Pt is affected by both dispersion and support: Pt1 presents fully oxidized state in both Pt1/TiO2 and Pt1/Al2O3; PtNP-S in PtNP-S/TiO2 appear nearly oxidized state while about half of Pt is metallic state in PtNP-S/Al2O3; PtNP-L in both PtNP-L/TiO2 and PtNP-L/Al2O3 exhibit metallic state. All the Pt species supported on TiO2 present much lower apparent activation barriers (Eapp) than that on Al2O3. Moreover, Pt1/TiO2 possesses dozen times of efficiency than PtNP-S/TiO2 although they have similar Eapp values. A truth is finally made clear that a reducible metal oxide with low oxygen vacancy formation energy is critical to endow Pt/metal oxide a high activity and the single-atom dispersion of Pt is the way to maximize the active sites of Pt/metal oxide.

Keywords: platinum, dispersion, CO oxidation, single-atom catalysis, nano catalysis

References(63)

1

Lin, J.; Wang, X. D.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805-1813.

2

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-154.

3

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.

4

Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. H. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631-635.

5

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683-733.

6

Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584-2588.

7

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564-569.

8

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935-938.

9

Zhai, Y. P.; Pierre, D.; Si, R.; Deng, W. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010, 329, 1633-1636.

10

de Lima, S. M.; da Cruz, I. O.; Jacobs, G.; Davis, B. H.; Mattos, L. V.; Noronha, F. B. Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. J. Catal. 2008, 257, 356-368.

11

Lin, L. L.; Zhou, W.; Cao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-83.

12

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165-3182.

13

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986-12043.

14

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

15

Chen, Z.; Yang, W. J.; Wu, Y.; Zhang, C.; Luo, J.; Chen, C.; Li, Y. D. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Res. 2020, 13, 3075-3081.

16

Cao, S. F.; Yang, M.; Elnabawy, A. O.; Trimpalis, A.; Li, S.; Wang, C. Y.; Göltl, F.; Chen, Z. H. Y.; Liu, J. L.; Shan, J. J. et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat. Chem. 2019, 11, 1098-1105.

17

Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M.; Flytzani-Stephanopoulos, M. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498-1501.

18

Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal. Sci. Technol. 2017, 7, 4259-4275.

19

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260-6269.

20

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.

21

Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M. M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921-948.

22

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-192.

23

Maurer, F.; Jelic, J.; Wang, J. J.; Gänzler, A.; Dolcet, P.; Wöll, C.; Wang, Y. M.; Studt, F.; Casapu, M.; Grunwaldt, J. D. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 2020, 3, 824-833.

24

Therrien, A. J.; Hensley, A. J. R.; Marcinkowski, M. D.; Zhang, R. Q.; Lucci, F. R.; Coughlin, B.; Schilling, A. C.; McEwen, J. S.; Sykes, E. C. H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192-198.

25

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419-1423.

26

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

27

Zhang, Z. L.; Zhu, Y. H.; Asakura, H.; Zhang, B.; Zhang, J. G.; Zhou, M. X.; Han, Y.; Tanaka, T.; Wang, A. Q.; Zhang, T. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 2017, 8, 16100.

28

Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634-12645.

29

Wang, H.; Liu, J. X.; Allard, L. F.; Lee, S.; Liu, J. L.; Li, H.; Wang, J. Q.; Wang, J.; Oh, S. H.; Li, W. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.

30

Beniya, A.; Higashi, S.; Ohba, N.; Jinnouchi, R.; Hirata, H.; Watanabe, Y. CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nat. Commun. 2020, 11, 1888.

31

van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955-970.

32

Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core-shell electrocatalysts for rechargeable zinc-air batteries. J. Energy Chem. 2021, 53, 364-371.

33

Liu, K. P.; Zhao, X. T.; Ren, G. Q.; Yang, T.; Ren. Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263.

34

Tang, Y.; Wang, Y. G.; Li, J. Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J. Phys. Chem. C 2017, 121, 11281-11289.

35

Wang, C. L.; Gu X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars-Van Krevelen mechanism for CO Oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887-891.

36

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.

37

Zhao, Y. Y.; Yang, K. R.; Wang, Z. C.; Yan, X. X.; Cao, S. F.; Ye, Y. F.; Dong, Q.; Zhang, X. Z.; Thorne, J. E.; Jin, L. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl. Acad. Sci. USA 2018, 115, 2902-2907.

38

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810-11899.

39

Li, H. N.; Cao, C. Y.; Liu, J.; Shi, Y.; Si, R.; Gu, L.; Song, W. G. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China Mater. 2019, 62, 1306-1314.

40

Kuai, L.; Chen, Z.; Liu, S. J.; Kan, E. J.; Yu, N.; Ren, Y. M.; Fang, C. H.; Li, X. Y.; Li, Y. D.; Geng, B. Y. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

41

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

42

Kwak, J. H.; Kovarik, L.; Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013, 3, 2094-2100.

43

Allard, L. F.; Borisevich, A.; Deng, W. L.; Si, R.; Flytzani-Stephanopoulos, M.; Overbury, S. H. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 2009, 58, 199-212.

44

Kuai, L.; Liu, S. J.; Cao, S. F.; Ren, Y. M.; Kan, E. J.; Zhao, Y. Y.; Yu, N.; Li, F.; Li, X. Y.; Wu, Z. C. et al. Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis-deposition route for water-gas shift reaction. Chem. Mater. 2018, 30, 5534-5538.

45

Xiang, Y. P.; He, J.; Sun, N.; Fan, Y. T; Yang, L. M.; Fang, C. H.; Kuai, L. Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction. Microp. Mesop. Mater. 2020, 308, 110507.

46

Kan, E. J.; Kuai, L.; Wang, W. H.; Geng, B. Y. Delivery of highly active noble-metal nanoparticles into microspherical supports by an aerosol-spray method. Chem. Eur. J. 2015, 21, 13291-13296.

47

Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B 1999, 103, 3818-3827.

48

Wang, S. Z.; Kuai, L.; Huang, Y. C.; Yu, X.; Liu, Y. D.; Li, W. Z.; Chen, L.; Geng, B. Y. A highly efficient, clean-surface, porous platinum electrocatalyst and the inhibition effect of surfactants on catalytic activity. Chem. Eur. J. 2013, 19, 240-248.

49

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter 2002, 14, 2717.

50

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

51

Hamann, D. R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494-1497.

52

Li, C.; Zhao, Y. F.; Gong, Y. Y.; Wang, T.; Sun, C. Q. Band gap engineering of early transition-metal-doped anatase TiO2: First principles calculations. Phys. Chem. Chem. Phys. 2014, 16, 21446-21451.

53

Yan, D. X.; Liu, Q.; Zeng, C.; Dong, N. B.; Huang, Y. D.; Xiao, W. Adsorption of lithium polysulfides on an anatase (101) and an α-Al2O3(0001) surface under external electric field with first principles calculations. Appl. Surf. Sci. 2019, 463, 331-338.

54

Xu, B.; Yang, H.; Zhou, G.; Wang, X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci. China Mater. 2014, 57, 34-41.

55

Yang, M.; Liu, J. L.; Lee, S.; Zugic, B.; Huang, J.; Allard, L. F.; Flytzani-Stephanopoulos, M. A common single-site Pt(Ⅱ)-O(OH)x-species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 2015, 137, 3470-3473.

56

Thang, H. V.; Pacchioni, G.; Derita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 2018, 367, 104-114.

57

DeRita, L.; Resasco, J.; Dai, S.; Boubnov, A.; Thang, H. V.; Hoffman, A. S.; Ro, I.; Graham, G. W.; Bare, S. R.; Pacchioni, G. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 2019, 18, 746-751.

58

Baxter, R. J.; Hu, P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 2002, 116, 4379.

59

Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem., Int. Ed. 2008, 47, 3524-3535.

60

Qin, L.; Cui Y. Q.; Deng T. L.; Wei, F. H.; Zhang, X. F. Highly stable and active Cu1/CeO2 single-atom catalyst for CO oxidation: A DFT study. ChemPhyChem 2018, 19, 3346-3349.

61

Thang, H. V.; Pacchioni, G. CO oxidation promoted by a Pt4/TiO2 catalyst: Role of lattice oxygen at the metal/oxide interface. Catal. Lett. 2019, 149, 390-398.

62

Sanchez, M. G.; Gazquez, J. L. Oxygen vacancy model in strong metal-support interaction. J. Catal. 1987, 104, 120-135.

63

Gao, H. W. CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study. Appl. Surf. Sci. 2016, 379, 347-357.

File
12274_2021_3443_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 January 2021
Revised: 02 March 2021
Accepted: 07 March 2021
Published: 04 May 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21801003 and 21871005), the Natural Science Foundation of Anhui Province (No. 1808085QB47), the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-005), Fund for Outstanding Youth of Anhui Polytechnic University (Nos. 2019JQ01 and 2016BJRC001). The authors thank the National Synchrotron Radiation Laboratory (Beijing) for EXAFS collection and Hangzhou Precision New Materials and Technology Co., Ltd. (Hangzhou, China) for the DFT study.

Return