AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Laser-induced graphene for bioelectronics and soft actuators

Yadong Xu1Qihui Fei1Margaret Page2Ganggang Zhao2Yun Ling2Dick Chen3Zheng Yan1,2( )
Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, USA
Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, USA
Rock Bridge High School, Columbia, Missouri 65203, USA
Show Author Information

Graphical Abstract

Abstract

Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.

References

[1]
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
[2]
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
[3]
Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.
[4]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[5]
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
[6]
Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291-312.
[7]
Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647-651.
[8]
El-Kady, M. F.; Kaner, R. B. Direct laser writing of graphene electronics. ACS Nano 2014, 8, 8725-8729.
[9]
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.
[10]
Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.
[11]
Carvalho, A. F.; Fernandes, A. J. S.; Leitão, C.; Deuermeier, J.; Marques, A. C.; Martins, R.; Fortunato, E.; Costa, F. M. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271.
[12]
Stanford, M. G.; Zhang, C.; Fowlkes, J. D.; Hoffman, A.; Ivanov, I. N.; Rack, P. D.; Tour, J. M. High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 2020, 12, 10902-10907.
[13]
Garland, N. T.; McLamore, E. S.; Cavallaro, N. D.; Mendivelso-Perez, D.; Smith, E. A.; Jing, D. P.; Claussen, J. C. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 2018, 10, 39124-39133.
[14]
You, R.; Liu, Y. Q.; Hao, Y. L.; Han, D. D.; Zhang, Y. L.; You, Z. Laser fabrication of graphene-based flexible electronics. Adv. Mater. 2020, 32, 1901981.
[15]
Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609-1620.
[16]
Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene: From discovery to translation. Adv. Mater. 2019, 31, 1803621.
[17]
Liu, Y. Q.; Chen, Z. D.; Mao, J. W.; Han, D. D.; Sun, X. Laser fabrication of graphene-based electronic skin. Front. Chem. 2019, 7, 461.
[18]
Huang, L. B.; Su, J. J.; Song, Y.; Ye, R. Q. Laser-induced graphene: En route to smart sensing. Nano-Micro Lett. 2020, 12, 157.
[19]
Wan, Z. F.; Nguyen, N. T.; Gao, Y. S.; Li, Q. Laser induced graphene for biosensors. Sustain. Mater. Technol. 2020, 25, e00205.
[20]
Vashisth, A.; Kowalik, M.; Gerringer, J. C.; Ashraf, C.; Van Duin, A. C. T.; Green, M. J. ReaxFF simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 2020, 3, 1881-1890.
[21]
Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012.
[22]
Singh, S. P.; Li, Y. L.; Zhang, J. B.; Tour, J. M.; Arnusch, C. J. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 2018, 12, 289-297.
[23]
Ge, L.; Hong, Q.; Li, H.; Liu, C. C.; Li, F. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 2019, 29, 1904000.
[24]
Yang, W. W.; Zhao, W.; Li, Q. S.; Li, H.; Wang, Y. L.; Li, Y. X.; Wang, G. Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces 2020, 12, 3928-3935.
[25]
Zhang, Z. C.; Song, M. M.; Hao, J. X.; Wu, K. B.; Li, C. Y.; Hu, C. G. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 2018, 127, 287-296.
[26]
Cao, L. J.; Zhu, S. R.; Pan, B. H.; Dai, X. Y.; Zhao, W. W.; Liu, Y.; Xie, W. P.; Kuang, Y. B.; Liu, X. Q. Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 2020, 163, 85-94.
[27]
Ye, R. Q.; Chyan, Y.; Zhang, J. B.; Li, Y. L.; Han, X.; Kittrell, C.; Tour, J. M. Laser-induced graphene formation on wood. Adv. Mater. 2017, 29, 1702211.
[28]
Mahmood, F.; Zhang, H. W.; Lin, J.; Wan, C. X. Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 2020, 5, 14611-14618.
[29]
Zhang, W. L.; Lei, Y. J.; Ming, F. W.; Jiang, Q.; Costa, P. M. F. J.; Alshareef, H. N. Lignin laser lithography: A direct-write method for fabricating 3D graphene electrodes for microsupercapacitors. Adv. Energy Mater. 2018, 8, 1801840.
[30]
Edberg, J.; Brooke, R.; Hosseinaei, O.; Fall, A.; Wijeratne, K.; Sandberg, M. Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. npj Flex. Electron. 2020, 4, 17.
[31]
Chyan, Y.; Ye, R. Q.; Li, Y. L.; Singh, S. P.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano 2018, 12, 2176-2183.
[32]
Zang, X. N.; Shen, C. W.; Chu, Y.; Li, B. X.; Wei, M. S.; Zhong, J. W.; Sanghadasa, M.; Lin, L. W. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater. 2018, 30, 1800062.
[33]
Zang, X. N.; Jian, C. Y.; Zhu, T. S.; Fan, Z.; Wang, W. L.; Wei, M. S.; Li, B. X.; Diaz, M. F.; Ashby, P.; Lu, Z. M. et al. Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 2019, 10, 3112.
[34]
Zang, X. N.; Tai, K. Y.; Jian, C. Y.; Shou, W.; Matusik, W.; Ferralis, N.; Grossman, J. C. Laser-induced tar-mediated sintering of metals and refractory carbides in air. ACS Nano 2020, 14, 10413-10420.
[35]
Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219-3226.
[36]
Rahimi, R.; Ochoa, M.; Yu, W. Y.; Ziaie, B. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 2015, 7, 4463-4470.
[37]
Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.
[38]
Li, J. T.; Stanford, M. G.; Chen, W. Y.; Presutti, S. E.; Tour, J. M. Laminated laser-induced graphene composites. ACS Nano 2020, 14, 7911-7919.
[39]
Gao, Y.; Li, Q.; Wu, R. Y.; Sha, J.; Lu, Y. F.; Xuan, F. Z. Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Adv. Funct. Mater. 2019, 29, 1806786.
[40]
Zhu, Y. S.; Cai, H. B.; Ding, H. Y.; Pan, N.; Wang, X. P. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195-6200.
[41]
Nair, V.; Yi, J.; Isheim, D.; Rotenberg, M.; Meng, L. Y.; Shi, F. Y.; Chen, X. Q.; Gao, X.; Prominski, A.; Jiang, Y. W. et al. Laser writing of nitrogen-doped silicon carbide for biological modulation. Sci. Adv. 2020, 6, eaaz2743.
[42]
Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.
[43]
Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907-913.
[44]
Tan, K. W.; Jung, B.; Werner, J. G.; Rhoades, E. R.; Thompson, M. O.; Wiesner, U. Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 2015, 349, 54-58.
[45]
Bergsman, D. S.; Getachew, B. A.; Cooper, C. B.; Grossman, J. C. Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat. Commun. 2020, 11, 3636.
[46]
Yan, W. H.; Yan, W. R.; Chen, T. D.; Xu, J. G.; Tian, Q.; Ho, D. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 2020, 3, 2545-2553.
[47]
Peng, Z. W.; Ye, R. Q.; Mann, J. A.; Zakhidov, D.; Li, Y. L.; Smalley, P. R.; Lin, J.; Tour, J. M. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 2015, 9, 5868-5875.
[48]
Stanford, M. G.; Yang, K. C.; Chyan, Y.; Kittrell, C.; Tour, J. M. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 2019, 13, 3474-3482.
[49]
Yang, L.; Yi, N.; Zhu, J.; Cheng, Z.; Yin, X. Y.; Zhang, X. Y.; Zhu, H. L.; Cheng, H. Y. Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. J. Mater. Chem. A 2020, 8, 6487-6500.
[50]
Yang, Y. R.; Song, Y.; Bo, X. J.; Min, J. H.; Pak, O. S.; Zhu, L. L.; Wang, M. Q.; Tu, J. B.; Kogan, A.; Zhang, H. X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217-224.
[51]
Tao, L. Q.; Tian, H.; Liu, Y.; Ju, Z. Y.; Pang, Y.; Chen, Y. Q.; Wang, D. Y.; Tian, X. G.; Yan, J. C.; Deng, N. Q. et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017, 8, 14579.
[52]
Tehrani, F.; Beltrán-Gastélum, M.; Sheth, K.; Karajic, A.; Yin, L.; Kumar, R.; Soto, F.; Kim, J.; Wang, J.; Barton, S. et al. Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 2019, 4, 1900162.
[53]
Zhu, J. X.; Cho, M.; Li, Y. T.; Cho, I.; Suh, J. H.; Del Orbe, D.; Jeong, Y.; Ren, T. L.; Park, I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl. Mater. Interfaces 2019, 11, 24386-24394.
[54]
Ling, Y.; Zhuang, X. T.; Xu, Z.; Xie, Y. C.; Zhu, X. Y.; Xu, Y. D.; Sun, B. H.; Lin, J.; Zhang, Y. H.; Yan, Z. Mechanically assembled, three-dimensional hierarchical structures of cellular graphene with programmed geometries and outstanding electromechanical properties. ACS Nano 2018, 12, 12456-12463.
[55]
Singh, S. P.; Li, Y. L.; Be’er, A.; Oren, Y.; Tour, J. M.; Arnusch, C. J. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl. Mater. Interfaces 2017, 9, 18238-18247.
[56]
Huang, L. B.; Xu, S. Y.; Wang, Z. Y.; Xue, K.; Su, J. J.; Song, Y.; Chen, S. J.; Zhu, C. L.; Tang, B. Z.; Ye, R. Q. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano 2020, 14, 12045-12053.
[57]
Zhong, H.; Zhu, Z. R.; Lin, J.; Cheung, C. F.; Lu, V. L.; Yan, F.; Chan, C. Y.; Li, G. J. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213-6221.
[58]
Lu, Y. C.; Lyu, H.; Richardson, A. G.; Lucas, T. H.; Kuzum, D. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 2016, 6, 33526.
[59]
d’Amora, M.; Lamberti, A.; Fontana, M.; Giordani, S. Toxicity assessment of laser-induced graphene by zebrafish during development. J. Phys. Mater. 2020, 3, 034008.
[60]
Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.
[61]
Puetz, P.; Behrent, A.; Baeumner, A. J.; Wegener, J. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens. Actuators B: Chem. 2020, 321, 128443.
[62]
Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379-385.
[63]
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
[64]
Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531-22542.
[65]
Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and skin-conformable conductors based on polyurethane/laser-induced graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855-19865.
[66]
Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019, 29, 1904706.
[67]
Luo, S. D.; Hoang, P. T.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522-531.
[68]
Tao, L. Q.; Wang, D. Y.; Tian, H.; Ju, Z. Y.; Liu, Y.; Pang, Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale 2017, 9, 8266-8273.
[69]
Wang, Y. N.; Wang, Y.; Zhang, P. P.; Liu, F.; Luo, S. D. Laser-induced freestanding graphene papers: A new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 2018, 14, 1802350.
[70]
He, M. H.; Wang, Y. N.; Wang, S. R.; Luo, S. D. Laser-induced graphene enabled 1D fiber electronics. Carbon 2020, 168, 308-318.
[71]
Kaidarova, A.; Khan, M. A.; Marengo, M.; Swanepoel, L.; Przybysz, A.; Muller, C.; Fahlman, A.; Buttner, U.; Geraldi, N. R.; Wilson, R. P. et al. Wearable multifunctional printed graphene sensors. npj Flex. Electron. 2019, 3, 15.
[72]
Rahimi, R.; Ochoa, M.; Ziaie, B. Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics. ACS Appl. Mater. Interfaces 2016, 8, 16907-16913.
[73]
Tian, Q.; Yan, W. R.; Li, Y. Q.; Ho, D. Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure. ACS Appl. Mater. Interfaces 2020, 12, 9710-9717.
[74]
Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205-213.
[75]
Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A. High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 2008, 92, 202108.
[76]
Bobinger, M. R.; Romero, F. J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D. P.; Rodríguez, N.; Rivadeneyra, A. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 2019, 144, 116-126.
[77]
Huang, X.; Cheng, H. Y.; Chen, K. L.; Zhang, Y. L.; Zhang, Y. H.; Liu, Y. H.; Zhu, C. Q.; Ouyang, S. C.; Kong, G. W.; Yu, C. J. et al. Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 2013, 60, 2848-2857.
[78]
Lan, L. Y.; Le, X. H.; Dong, H. Y.; Xie, J.; Ying, Y. B.; Ping, J. F. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 2020, 165, 112360.
[79]
Zhu, C. C.; Tao, L. Q.; Wang, Y.; Zheng, K.; Yu, J. B.; Li, X. D.; Chen, X. P.; Huang, Y. X. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B: Chem. 2020, 325, 128790.
[80]
Adhikari, K. K.; Wang, C.; Qiang, T.; Wu, Q. Polyimide-derived laser-induced porous graphene-incorporated microwave resonator for high-performance humidity sensing. Appl. Phys. Express 2019, 12, 106501.
[81]
Xu, Y. D.; Zhao, G. G.; Zhu, L.; Fei, Q. H.; Zhang, Z.; Chen, Z. Y.; An, F. F.; Chen, Y. Y.; Ling, Y.; Guo, P. J. et al. Pencil-paper on-skin electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292-18301.
[82]
Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614-9635.
[83]
Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160-167.
[84]
Choi, S. J.; Kim, I. D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 2018, 14, 221-260.
[85]
Wu, D. Z.; Peng, Q. Q.; Wu, S.; Wang, G. S.; Deng, L.; Tai, H. L.; Wang, L. Y.; Yang, Y. J.; Dong, L. X.; Zhao, Y. et al. A simple graphene NH3 gas sensor via laser direct writing. Sensors 2018, 18, 4405.
[86]
Nayak, P.; Kurra, N.; Xia, C.; Alshareef, H. N. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater. 2016, 2, 1600185.
[87]
Xu, G. Y.; Jarjes, Z. A.; Wang, H. W.; Phillips, A. R. J.; Kilmartin, P. A.; Travas-Sejdic, J. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes. ACS Appl. Mater. Interfaces 2018, 10, 42136-42145.
[88]
Han, T.; Nag, A.; Simorangkir, R. B. V. B.; Afsarimanesh, N.; Liu, H. R.; Mukhopadhyay, S. C.; Xu, Y. Z.; Zhadobov, M.; Sauleau, R. Multifunctional flexible sensor based on laser-induced graphene. Sensors 2019, 19, 3477.
[89]
Sharma, S.; Ganeshan, S. K.; Pattnaik, P. K.; Kanungo, S.; Chappanda, K. N. Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine. Mater. Lett. 2020, 262, 127150.
[90]
Getachew, B. A.; Bergsman, D. S.; Grossman, J. C. Laser-induced graphene from polyimide and polyethersulfone precursors as a sensing electrode in anodic stripping voltammetry. ACS Appl. Mater. Interfaces 2020, 12, 48511-48517.
[91]
Wan, Z. F.; Umer, M.; Lobino, M.; Thiel, D.; Nguyen, N. T.; Trinchi, A.; Shiddiky, M. J. A.; Gao, Y. S.; Li, Q. Laser induced self-N-doped porous graphene as an electrochemical biosensor for femtomolar miRNA detection. Carbon 2020, 163, 385-394.
[92]
Yu, Y. C.; Joshi, P. C.; Wu, J.; Hu, A. M. Laser-induced carbon-based smart flexible sensor array for multiflavors detection. ACS Appl. Mater. Interfaces 2018, 10, 34005-34012.
[93]
Matsui, J.; Takayose, M.; Akamatsu, K.; Nawafune, H.; Tamaki, K.; Sugimoto, N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst 2009, 134, 80-86.
[94]
Jeong, S. Y.; Kim, J. S.; Lee, J. H. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, 2002075.
[95]
Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761-11817.
[96]
Cheng, C.; Wang, S. T.; Wu, J.; Yu, Y. C.; Li, R. Z.; Eda, S.; Chen, J. G.; Feng, G. Y.; Lawrie, B.; Hu, A. M. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl. Mater. Interfaces 2016, 8, 17784-17792.
[97]
Marques, A. C.; Cardoso, A. R.; Martins, R.; Sales, M. G. F.; Fortunato, E. Laser-induced graphene-based platforms for dual biorecognition of molecules. ACS Appl. Nano Mater. 2020, 3, 2795-2803.
[98]
Fenzl, C.; Nayak, P.; Hirsch, T.; Wolfbeis, O. S.; Alshareef, H. N.; Baeumner, A. J. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2017, 2, 616-620.
[99]
Soares, R. R. A.; Hjort, R. G.; Pola, C. C.; Parate, K.; Reis, E. L.; Soares, N. F.; McLamore, E. S.; Claussen, J. C.; Gomes, C. L. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens. 2020, 5, 1900-1911.
[100]
Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S. C.; Xuan, X.; Kim, J.; Park, J. Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B: Chem. 2020, 311, 127866.
[101]
Torrente-Rodríguez, R. M.; Tu, J. B.; Yang, Y. R.; Min, J. H.; Wang, M. Q.; Song, Y.; Yu, Y.; Xu, C. H.; Ye, C.; IsHak, W. W. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2020, 2, 921-937.
[102]
Torrente-Rodríguez, R. M.; Lukas, H.; Tu, J. B.; Min, J. H.; Yang, Y. R.; Xu, C. H.; Rossiter, H. B.; Gao, W. SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3, 1981-1998.
[103]
Stanford, M. G.; Li, J. T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J. M. Laser-induced graphene triboelectric nanogenerators. ACS Nano 2019, 13, 7166-7174.
[104]
Zhao, P. F.; Bhattacharya, G.; Fishlock, S. J.; Guy, J. G. M.; Kumar, A.; Tsonos, C.; Yu, Z. D.; Raj, S.; McLaughlin, J. A.; Luo, J. K. et al. Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes. Nano Energy 2020, 75, 104958.
[105]
Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 2019, 31, 1805705.
[106]
Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-4357.
[107]
Bai, J. X.; Huang, Y. X.; Cheng, H. H.; Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083-23091.
[108]
Zhang, C.; Xie, Y. C.; Deng, H.; Tumlin, T.; Zhang, C.; Su, J. W.; Yu, P.; Lin, J. Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 2017, 13, 1604197.
[109]
Chen, Y.; Long, J. Y.; Zhou, S.; Shi, D. C.; Huang, Y.; Chen, X.; Gao, J.; Zhao, N.; Wong, C. P. UV laser-induced polyimide-to-graphene conversion: Modeling, fabrication, and application. Small Methods 2019, 3, 1900208.
[110]
Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.
[111]
Deng, H.; Zhang, C.; Su, J. W.; Xie, Y. C.; Zhang, C.; Lin, J. Bioinspired multi-responsive soft actuators controlled by laser tailored graphene structures. J. Mater. Chem. B 2018, 6, 5415-5423.
[112]
Ling, Y.; Pang, W. B.; Li, X. P.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y. C.; Fei, Q. H.; Xu, Y. D.; Zhao, G. G. et al. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction. Adv. Mater. 2020, 32, 1908475.
[113]
Luong, D. X.; Subramanian, A. K.; Silva, G. A. L.; Yoon, J.; Cofer, S.; Yang, K.; Owuor, P. S.; Wang, T.; Wang, Z.; Lou, J. et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 2018, 30, 1707416.
[114]
Senyuk, B.; Behabtu, N.; Martinez, A.; Lee, T.; Tsentalovich, D. E.; Ceriotti, G.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. Nat. Commun. 2015, 6, 7157.
[115]
Kucherenko, I. S.; Sanborn, D.; Chen, B. L.; Garland, N.; Serhan, M.; Forzani, E.; Gomes, C.; Claussen, J. C. Ion-selective sensors based on laser-induced graphene for evaluating human hydration levels using urine samples. Adv. Mater. Technol. 2020, 5, 1901037.
[116]
Lin, X. N.; Lu, Z. W.; Dai, W. L.; Liu, B. C.; Zhang, Y. X.; Li, J. Y.; Ye, J. S. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41-49.
[117]
Li, H.; Guo, C. X.; Liu, C. C.; Ge, L.; Li, F. Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 2020, 145, 4041-4049.
[118]
Zhang, Y.; Li, N.; Xiang, Y. J.; Wang, D. B.; Zhang, P.; Wang, Y. Y.; Lu, S.; Xu, R. Q.; Zhao, J. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 2020, 156, 506-513.
[119]
Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 2016, 6, 27975.
[120]
Yoon, H.; Nah, J.; Kim, J.; Xuan, X.; Park, J. Laser-induced graphene stamp for high performacne elecrochemical sensing applications. In Proceedings of the IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 2019, pp 537-540.
[121]
Zhang, Y. H.; Zhu, H. C.; Sun, P.; Sun, C. K.; Huang, H.; Guan, S.; Liu, H. L.; Zhang, H. Y.; Zhang, C.; Qin, K. R. Laser-induced graphene-based non-enzymatic sensor for detection of hydrogen peroxide. Electroanalysis 2019, 31, 1334-1341.
[122]
Aparicio-Martínez, E.; Ibarra, A.; Estrada-Moreno, I. A.; Osuna, V.; Dominguez, R. B. Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sens. Actuators: B Chem. 2019, 301, 127101.
[123]
Mamleyev, E. R.; Heissler, S.; Nefedov, A.; Weidler, P. G.; Nordin, N.; Kudryashov, V. V.; Länge, K.; MacKinnon, N.; Sharma, S. Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors. npj Flex. Electron. 2019, 3, 2.
[124]
Yagati, A. K.; Behrent, A.; Beck, S.; Rink, S.; Goepferich, A. M.; Min, J. H.; Lee, M. H.; Baeumner, A. J. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Biosens. Bioelectron. 2020, 164, 112272.
[125]
Xu, G. Y.; Jarjes, Z. A.; Desprez, V.; Kilmartin, P. A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 2018, 107, 184-191.
[126]
Hui, X.; Xuan, X.; Kim, J.; Park, J. Y. A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim. Acta 2019, 328, 135066.
[127]
Vanegas, D. C.; Patiño, L.; Mendez, C.; de Oliveira, D. A; Torres, A. M.; Gomes, C. L.; McLamore, E. S. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 2018, 8, 42.
[128]
You, Z. H.; Qiu, Q. M.; Chen, H. Y.; Feng, Y. Y.; Wang, X.; Wang, Y. X.; Ying, Y. B. Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens. Bioelectron. 2020, 150, 111896.
[129]
Cardoso, A. R.; Marques, A. C.; Santos, L.; Carvalho, A. F.; Costa, F. M.; Martins, R.; Sales, M. G. F.; Fortunato, E. Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 2019, 124-125, 167-175.
[130]
Ge, L.; Hong, Q.; Li, H.; Li, F. A laser-induced TiO2-decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chem. Commun. 2019, 55, 4945-4948.
Nano Research
Pages 3033-3050
Cite this article:
Xu Y, Fei Q, Page M, et al. Laser-induced graphene for bioelectronics and soft actuators. Nano Research, 2021, 14(9): 3033-3050. https://doi.org/10.1007/s12274-021-3441-9
Topics:
Part of a topical collection:

1023

Views

76

Crossref

66

Web of Science

73

Scopus

3

CSCD

Altmetrics

Received: 13 November 2020
Revised: 06 March 2021
Accepted: 07 March 2021
Published: 07 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return