Journal Home > Volume 14 , Issue 12

The development of triboelectric nanogenerator (TENG) technology which can directly convert ambient mechanical energy into electric energy may affect areas from green energy harvesting to emerging wearing electronics. And, the material of triboelectric layer is critical to the mechanical robustness and electrical output characteristics of the TENGs. Herein, a MXene enhanced electret polytetrafluoroethylene (PTFE) film with a high mechanical property and surface charge density is developed. The MXene/PTFE composite film was synthesized by spraying and annealing treatment. With the doping of MXene, the crystallinity of composite film could be tuned, leading to an enhancement in the tensile property of 450% and reducing the wear volume about 80% in the friction test. Furthermore, the as-fabricated TENG with this composite film outputs 397 V of open-circuit voltage, 21 μA of short-circuit current, and 232 nC of transfer charge quantity, which are 4, 6, and 6 times higher than that of the TENG made by pure PTFE film, respectively. Therefore, this work provides a creative strategy to simultaneously improve the mechanical property and electrical performance of the TENGs, which have great potential in improving device stability under a complex mechanical environment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MXene based mechanically and electrically enhanced film for triboelectric nanogenerator

Show Author's information Yuyu Gao1,2,§Guoxu Liu1,3,§Tianzhao Bu1,3Yaoyao Liu1,3Youchao Qi1,3Yanting Xie2Shaohang Xu1,3Weili Deng2Weiqing Yang2( )Chi Zhang1,3,4 ( )
CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China
Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China

§ Yuyu Gao and Guoxu Liu contributed equally to this work.

Abstract

The development of triboelectric nanogenerator (TENG) technology which can directly convert ambient mechanical energy into electric energy may affect areas from green energy harvesting to emerging wearing electronics. And, the material of triboelectric layer is critical to the mechanical robustness and electrical output characteristics of the TENGs. Herein, a MXene enhanced electret polytetrafluoroethylene (PTFE) film with a high mechanical property and surface charge density is developed. The MXene/PTFE composite film was synthesized by spraying and annealing treatment. With the doping of MXene, the crystallinity of composite film could be tuned, leading to an enhancement in the tensile property of 450% and reducing the wear volume about 80% in the friction test. Furthermore, the as-fabricated TENG with this composite film outputs 397 V of open-circuit voltage, 21 μA of short-circuit current, and 232 nC of transfer charge quantity, which are 4, 6, and 6 times higher than that of the TENG made by pure PTFE film, respectively. Therefore, this work provides a creative strategy to simultaneously improve the mechanical property and electrical performance of the TENGs, which have great potential in improving device stability under a complex mechanical environment.

Keywords: triboelectric nanogenerator, MXene, polytetrafluoroethylene (PTFE), mechanically and electrically enhanced, triboelectric layer

References(61)

1

Yu, X.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473-479.

2

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571-578.

3

Meng, K. Y.; Zhao, S. L.; Zhou, Y. H.; Wu, Y. F.; Zhang, S. L.; He, Q.; Wang, X.; Zhou, Z. H.; Fan, W. J.; Tan, X. L. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896-907.

4

Yan, C.; Gao, Y. Y.; Zhao, S. L.; Zhang, S. L.; Zhou, Y. H.; Deng, W. L.; Li, Z. W.; Jiang, G.; Jin, L.; Tian, G. et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2019, 67, 104235.

5

Lin, Z. M.; Yang, J.; Li, X. S.; Wu, Y. F.; Wei, W.; Liu, J.; Chen, J.; Yang, J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 2018, 28, 1704112.

6

Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

7

Tian, G.; Deng, W. L.; Gao, Y. Y.; Xiong, D.; Yan, C.; He, X. B.; Yang, T.; Jin, L.; Chu, X.; Zhang, H. T. et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574-581.

8

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2020, 171, 112714.

9

Zhang, B. B.; Zhang, L.; Deng, W. L.; Jin, L.; Chun, F. J.; Pan, H.; Gu, B. N.; Zhang, H. T.; Lv, Z. K.; Yang, W. Q. et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 2017, 11, 7440-7446.

10

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668-3720.

11

Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260-1269.

12

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

13

Zhang, N. N.; Chen, J.; Huang, Y.; Guo, W. W.; Yang, J.; Du, J.; Fan, X.; Tao, C. Y. A wearable all-solid photovoltaic textile. Adv. Mater. 2016, 28, 263-269.

14

Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

15

Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788-3796.

16

Gao, L. X.; Chen, X.; Lu, S.; Zhou, H.; Xie, W. B.; Chen, J. F.; Qi, M. K.; Yu, H.; Mu, X. J.; Wang, Z. L.; Yang, Y. Enhancing the output performance of triboelectric nanogenerator via grating-electrode- enabled surface plasmon excitation. Adv. Energy Mater. 2019, 9, 1902725.

17

Chen, J.; Guo, H. Y.; Wu, Z. Y.; Xu, G. Q.; Zi, Y. L.; Hu, C. G.; Wang, Z. L. Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy 2019, 64, 103920.

18

Guo, H.; Zhao, J. Q.; Dong, Q. S.; Wang, L. D.; Ren, X. Y.; Liu, S.; Zhang, C.; Dong, G. F. A self-powered and high-voltage-isolated organic optical communication system based on triboelectric nanogenerators and solar cells. Nano Energy 2019, 56, 391-399.

19

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energ Environ. Sci. 2020, 13, 277-285.

20

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34-51.

21

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 2019, 68, 104272.

22

Jie, Y.; Ma, J. M.; Chen, Y. D.; Cao, X.; Wang, N.; Wang, Z. L. Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using Maxwell's displacement currents. Adv. Energy Mater. 2018, 8, 1802084.

23

Deng, W. L.; Zhou, Y. H.; Zhao, X.; Zhang, S. L.; Zou, Y. J.; Xu, J.; Yeh, M. H.; Guo, H. Y.; Chen, J. Ternary electrification layered architecture for high-performance triboelectric nanogenerators. ACS Nano 2020, 14, 9050-9058.

24

Wang, H. M.; Li, D.; Zhong, W.; Xu, L.; Jiang, T.; Wang, Z. L. Self- powered inhomogeneous strain sensor enabled joint motion and three-dimensional muscle sensing. ACS Appl. Mater. Interfaces 2019, 11, 34251-34257.

25

Tan, P. C.; Zheng, Q.; Zou, Y.; Shi, B. J.; Jiang, D. J.; Qu, X. C.; Ouyang, H.; Zhao, C. C.; Cao, Y.; Fan, Y. B. et al. A battery-like self-charge universal module for motional energy harvest. Adv. Energy Mater. 2019, 9, 1901875.

26

Liang, X.; Jiang, T.; Feng, Y. W.; Lu, P. J.; An, J.; Wang, Z. L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123.

27

Ren, Z. W.; Wang, Z. M.; Liu, Z. R.; Wang, L. F.; Guo, H. Y.; Li, L. L.; Li, S. T.; Chen, X. Y.; Tang, W.; Wang, Z. L. Energy harvesting from breeze wind (0.7-6 m·s−1) using ultra-stretchable triboelectric nanogenerator. Adv. Energy Mater. 2020, 10, 2001770.

28

Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

29

Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

30

Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self- powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480-521.

31

Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836-3842.

32

Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334-12343.

33

Wang, S. L.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436-462.

34

Lin, Z. M.; Chen, J.; Li, X. S.; Zhou, Z. H.; Meng, K. Y.; Wei, W.; Yang, J.; Wang, Z. L. Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 2017, 11, 8830-8837.

35

Bai, P.; Zhu, G.; Jing, Q. S.; Yang, J.; Chen, J.; Su, Y. J.; Ma, J. S.; Zhang, G.; Wang, Z. L. Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv. Funct. Mater. 2014, 24, 5807-5813.

36

Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

37

Su, Y. J.; Yang, T. N.; Zhao, X.; Cai, Z. X.; Chen, G. R.; Yao, M. L.; Chen, K.; Bick, M.; Wang, J. J.; Li, S. D. et al. A wireless energy transmission enabled wearable active acetone biosensor for non- invasive prediabetes diagnosis. Nano Energy 2020, 74, 104941.

38

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self- powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316-1326.

39

Wu, Y.; Jing, Q. S.; Chen, J.; Bai, P.; Bai, J. J.; Zhu, G.; Su, Y. J.; Wang, Z. L. A self-powered angle measurement sensor based on triboelectric nanogenerator. Adv. Funct. Mater. 2015, 25, 2166-2174.

40

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Wang, Z. L. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

41

Dudem, B.; Kim, D. H.; Mule, A. R.; Yu, J. S. Enhanced performance of microarchitectured PTFE-based triboelectric nanogenerator via simple thermal imprinting lithography for self-powered electronics. ACS Appl. Mater. Interfaces 2018, 10, 24181-24192.

42

Chun, S.; Choi, I. Y.; Son, W.; Jung, J.; Lee, S.; Kim, H. S.; Pang, C.; Park, W.; Kim, J. K. High-output and bending-tolerant triboelectric nanogenerator based on an interlocked array of surface-functionalized indium tin oxide nanohelixes. ACS Energy Letters 2019, 4, 1748-1754.

43

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720-6728.

44

Chen, J.; Guo, H.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736-744.

45

Paria, S.; Si, S. K.; Karan, S. K.; Das, A. K.; Maitra, A.; Bera, R.; Halder, L.; Bera, A.; De, A.; Khatua, B. B. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. J. Mater. Chem. A 2019, 7, 3979-3991.

46

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847-853.

47

Chen, B. D.; Tang, W.; Zhang, C.; Xu, L.; Zhu, L. P.; Yang, L. J.; He, C.; Chen, J.; Liu, L.; Zhou, T. et al. Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Res. 2018, 11, 3096-3105.

48

Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404-6411.

49

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.

50

Cheng, Y.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145-2155.

51

Gao, Y. Y.; Yan, C.; Huang, H. C.; Yang, T.; Tian, G.; Xiong, D.; Chen, N. J.; Chu, X.; Zhong, S.; Deng, W. L. et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 2020, 30, 1909603.

52

Xu, H.; Ren, A. B.; Wu, J.; Wang, Z. M. Recent advances in 2D MXenes for photodetection. Adv. Funct. Mater. 2020, 30, 2000907.

53

Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

54

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

55

Dong, Y. C.; Mallineni, S. S. K.; Maleski, K.; Behlow, H.; Mochalin, V. N.; Rao, A. M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 2018, 44, 103-110.

56

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480-3488.

57

Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

58

Sciuti, V. F.; Melo, C. C.; Canto, L. B.; Canto, R. B. Influence of surface crystalline structures on DSC analysis of PTFE. Mater. Res. 2017, 20, 1350-1359.

59

Conte, M.; Pinedo, B.; Igartua, A. Role of crystallinity on wear behavior of PTFE composites. Wear 2013, 307, 81-86.

60

Lebedev, Y. A.; Korolev, Y. M.; Polikarpov, V. M.; Ignat'eva, L. N.; Antipov, E. M. X-ray powder diffraction study of polytetrafluoroethylene. Crystallogr. Rep. 2010, 55, 609-614.

61

Xia, X. N.; Chen, J.; Guo, H. Y.; Liu, G. L.; Wei, D. P.; Xi, Y.; Wang, X.; Hu, C. G. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Res. 2016, 10, 320-330.

File
12274_2021_3437_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 December 2020
Revised: 23 February 2021
Accepted: 03 March 2021
Published: 24 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors thank the support of the National Natural Science Foundation of China (Nos. 51922023 and 61874011), National Key Research and Development Program of China (No. 2016YFA0202704), Beijing Talents Foundation (No. 2017000021223TD04), Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF19B02), Open Research Foundation of State Key Laboratory of Digital Manufacturing Equipment & Technology (DMETKF2020014), and Young Scientific and Technological Innovation Research Team Funds of Sichuan Province (No. 20CXTD0106). Furthermore, the authors are grateful to Dr. Weijie Sun, who work as an engineer of material analysis test center of Beijing Institute of Nanoenergy and Nanosystems, for the material characterization.

Return