Journal Home > Volume 14 , Issue 12

Activating basal plane inert sites will endow MoTe2 with prominent hydrogen evolution reaction (HER) catalytic capability and arouse a new family of HER catalysts. Herein, we fabricated single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies introducing. Through the extraction of electrical parameters of single MoTe2 sheet, the in-plane and interlayer conductivities were optimized effectively by Te vacancies due to the defect levels. More deeply, Te vacancies can induce the delocalization of electrons around Mo atoms and shift the d-band center, as a consequence, facilitate the adsorption of H from the catalyst surface for HER catalysis. Benefiting by the coordinated regulation of band structure and local charge density, the overpotential at –10 mA∙cm−2 was reduced to 0.32 V after Te vacancies compared to 0.41 V for the basal plane sites of same MoTe2 nanosheet. Meanwhile, the insights gained from single nanosheet electrocatalytic microdevice can be applied to the improved HER of the commercial MoTe2 power. That the in situ testing of the atomic structure-electrical behavior-electrochemical properties of a single nanosheet before/after vacancies introducing provides reliable insight to structure-activity relationships.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering

Show Author's information Huan Yang1,§Yinghe Zhao1,§Qunlei Wen1Yan Mi2Youwen Liu1( )Huiqiao Li1Tianyou Zhai1( )
State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and TechnologyWuhan 430074 China
Guangxi Key Laboratory of Chemistry and Engineering of Forest Products School of Chemistry and Chemical Engineering, Guangxi University for NationalitiesNanning 530008 China

§ Huan Yang and Yinghe Zhao contributed equally to this work.

Abstract

Activating basal plane inert sites will endow MoTe2 with prominent hydrogen evolution reaction (HER) catalytic capability and arouse a new family of HER catalysts. Herein, we fabricated single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies introducing. Through the extraction of electrical parameters of single MoTe2 sheet, the in-plane and interlayer conductivities were optimized effectively by Te vacancies due to the defect levels. More deeply, Te vacancies can induce the delocalization of electrons around Mo atoms and shift the d-band center, as a consequence, facilitate the adsorption of H from the catalyst surface for HER catalysis. Benefiting by the coordinated regulation of band structure and local charge density, the overpotential at –10 mA∙cm−2 was reduced to 0.32 V after Te vacancies compared to 0.41 V for the basal plane sites of same MoTe2 nanosheet. Meanwhile, the insights gained from single nanosheet electrocatalytic microdevice can be applied to the improved HER of the commercial MoTe2 power. That the in situ testing of the atomic structure-electrical behavior-electrochemical properties of a single nanosheet before/after vacancies introducing provides reliable insight to structure-activity relationships.

Keywords: hydrogen evolution reaction, electron structure, MoTe2, electrocatalytic microdevice, vacancies engineering

References(48)

1

Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.

2

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

3

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56-64.

4

Chia, X. Y.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909-921.

5

Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C. M.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.

6

Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido- Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263-3269.

7

Qi, D. Y.; Han, C.; Rong, X. M.; Zhang, X. W.; Chhowalla, M.; Wee, A. T. S.; Zhang, W. J. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 2019, 13, 9464-9472.

8

You, J. W.; Yu, Y.; Cai, K.; Zhou, D. M.; Zhu, H. M.; Wang, R. Y.; Zhang, Q. F.; Liu, H. W.; Cai, Y. T.; Lu, D. et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Res. 2020, 13, 1636-1643.

9

Liang, Q. J.; Gou, J.; Arramel; Zhang, Q.; Zhang, W. J.; Wee, A. T. S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439-3444.

10

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881- 17888.

11

Liu, Y. W.; Hua, X. M.; Xiao, C.; Zhou, T. F.; Huang, P. C.; Guo, Z. P.; Pan, B. C.; Xie, Y. Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 5087-5092.

12

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298-4308.

13

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro E Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.

14

Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670-15675.

15

Zhao, Y. G.; Liu, C. B.; Wang, C. H.; Chong, X. D.; Zhang, B. Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4-x nanosheet cathode. CCS Chem. 2021, 3, 507-515.

16

Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675-685.

17

Si, C.; Choe, D.; Xie, W. Y.; Wang, H.; Sun, Z. M.; Bang, J.; Zhang, S. B. Photoinduced vacancy ordering and phase transition in MoTe2. Nano Lett. 2019, 19, 3612-3617.

18

Seo, S. Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S. Y.; Yeom, H. W.; Choi, H.; Jo, M. H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512-517.

19

Zhu, H.; Wang, Q. X.; Cheng, L. X.; Addou, R.; Kim, J. Y.; Kim, M. J.; Wallace, R. M. Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005-11014.

20

Kosmala, T.; Diaz, H. C.; Komsa, H. P.; Ma, Y. J.; Krasheninnikov, A. V.; Batzill, M.; Agnoli, S. Metallic twin boundaries boost the hydrogen evolution reaction on the basal plane of molybdenum selenotellurides. Adv. Energy Mater. 2018, 8, 1800031.

21

Qiu. H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

22

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916-2936.

23

Yu, H. S.; Wei, X. J.; Li, J.; Gu, S. Q.; Zhang, S.; Wang, L. H.; Ma, J. Y.; Li, L. N.; Gao, Q.; Si, R. et al. The XAFS beamline of SSRF. Nucl. Sci. Tech. 2015, 26, 050102.

24

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

25

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

26

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

27

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982-9985.

28

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.

29

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.

30

Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

31

Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.

32

Wang, P. Y.; Yan, M. Y.; Meng, J. S.; Jiang, G. P.; Qu, L. B.; Pan, X. L.; Liu, J. Z.; Mai, L. Q. Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit. Nat. Commun. 2017, 8, 645.

33

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase- purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-643.

34

You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T'-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation- dependent electrocatalysis. CCS Chem. 2019, 1, 396-406.

35

He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C. T.; Ding, M. N.; Wang, X. W. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 2019, 18, 1098-1104.

36

Yan, M. Y.; Pan, X. L.; Wang, P. Y.; Chen, F.; He, L.; Jiang, G. P.; Wang, J. H.; Liu, J. Z.; Xu, X.; Liao, X. B. et al. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109-4115.

37

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C−N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974-16981.

38

Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat. Chem. 2014, 6, 248-253.

39

Armstrong, R. D.; Henderson, M. Impedance plane display of a reaction with an adsorbed intermediate. J. Electroanal. Chem. 1972, 39, 81-90.

40

Choquette, Y.; Brossard, L.; Lasia, A.; Ménard, H. Investigation of hydrogen evolution on Raney-nickel composite-coated electrodes. Electrochim. Acta 1990, 35, 1251-1256.

41

Zheng, B. Y.; Li, D.; Zhu, C. G.; Lan, J. Y.; Sun, X. X.; Zheng, W. H.; Liu, H. W.; Zhang, X. H.; Zhu, X. L.; Feng, Y. X. et al. Dual- channel type tunable field-effect transistors based on vertical bilayer WS2(1-x)Se2x/SnS2 heterostructures. InfoMat 2020, 2, 752-760.

42

Huang, Y.; Zhuge, F. W.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062-4073.

43

Guo, Y. B; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635- 1645.

44

Gao, F. Y.; Hu, S. J.; Zhang, X. L.; Zheng, Y. R.; Wang, H. J.; Niu, Z. Z.; Yang, P. P.; Bao, R. C.; Ma, T.; Dang, Z. et al. High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 8706-8712.

45

Nørskov, J. K. Electronic factors in catalysis. Prog. Surf. Sci. 1991, 38, 103-144.

46

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076-5080.

47

Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ASC Nano 2019, 13, 6824-6834.

48

Liu, Y. W.; Xiao, C.; Li, Z.; Xie, Y. Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater. 2016, 6, 1600436.

File
12274_2021_3434_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 January 2021
Revised: 25 February 2021
Accepted: 02 March 2021
Published: 24 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21805102, 22071069, and 21825103), the Hubei Provincial Natural Science Foundation of China (No. 2019CFA002), and the Foundation of Basic and Applied Basic Research of Guangdong Province (No. 2019B1515120087). We also acknowledge technical support from Analytical and Testing Center in Huazhong University of Science and Technology.

Return