Journal Home > Volume 14 , Issue 10

Lithium metal (Li) is believed to be the ultimate anode for lithium-ion batteries (LIBs) owing to the advantages of high theoretical capacity, the lowest electrochemical potential, and light weight. Nevertheless, issues such as uncontrollable growth of Li dendrites, large volume changes, high chemical reactivity, and unstable solid electrolyte interphase (SEI) hinder its rapid development and practical application. Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li. COF-LZU1 microspheres are distributed among the MXene film framework. Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li+ flux and lowering the nucleation barrier, finally resulting in dense and dendrite-free Li deposition. Under the regulation of the COF-LZU1 seeds, the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced. Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile (S@PAN) cathode also exhibited a superior electrochemical performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries

Show Author's information Chuanliang Wei1Yusheng Wang1Yuchan Zhang1Liwen Tan1Yi Qian1Yuan Tao1Shenglin Xiong2Jinkui Feng1( )
Research Center for Carbon Nanomaterials,Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University,Jinan,250061,China;
School of Chemistry and Chemical Engineering,Shandong University,Jinan,250100,China;

Abstract

Lithium metal (Li) is believed to be the ultimate anode for lithium-ion batteries (LIBs) owing to the advantages of high theoretical capacity, the lowest electrochemical potential, and light weight. Nevertheless, issues such as uncontrollable growth of Li dendrites, large volume changes, high chemical reactivity, and unstable solid electrolyte interphase (SEI) hinder its rapid development and practical application. Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li. COF-LZU1 microspheres are distributed among the MXene film framework. Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li+ flux and lowering the nucleation barrier, finally resulting in dense and dendrite-free Li deposition. Under the regulation of the COF-LZU1 seeds, the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced. Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile (S@PAN) cathode also exhibited a superior electrochemical performance.

Keywords: MXene, lithium metal anode, dendrite-free, lithium sulfur battery, covalent organic framework (COF), sulfurized polyacrylonitrile

References(72)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

3

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.

4

Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56-74.

5

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

6

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513-537.

7

Fang, C. C.; Wang, X. F.; Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152-158.

8

Wei, C. L.; Tao, Y.; Fei, H. F.; An, Y. L.; Tian, Y.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 2020, 30, 206-227.

9

Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule 2019, 3, 2334-2363.

10

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040-3071.

11

Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161-175.

12

Shen, L.; Shi, P. R.; Hao, X. G.; Zhao, Q.; Ma, J. B.; He, Y. B.; Kang, F. Y. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small 2020, 16, 2000699.

13

Wu, H. L.; Zhang, Y. B.; Deng, Y. Q.; Huang, Z. J.; Zhang, C.; He, Y. B.; Lv, W.; Yang, Q. H. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Sci. China Mater. 2019, 62, 87-94.

14

Li, Y. H.; Wang, Y. K.; Shi, Y. C.; Wu, H.; Zeng, J. C.; Bu, H. T.; Zhu, M.; Xiao, C. H.; Zhang, Y. F.; Gao, G. X. et al. Ionic liquid assisted electrochemical coating zinc nanoparticles on carbon cloth as lithium dendrite suppressing host. Sci. Bull. 2020, 65, 1094-1102.

15

Liu, S.; Wang, A. X.; Li, Q. Q.; Wu, J. S.; Chiou, K.; Huang, J. X.; Luo, J. Y. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184-193.

16

Jie, Y. L.; Ren, X. D.; Cao, R. G.; Cai, W. B.; Jiao, S. H. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777.

17

Zhang, Y. C.; Fei, H. F.; An, Y. L.; Wei, C. L.; Feng, J. K. High voltage, flexible and low cost all-solid-state lithium metal batteries with a wide working temperature range. ChemistrySelect 2020, 5, 1214-1219.

18

Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J. et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 2021, 33, 2003524.

19

Gao, Y.; Rojas, T.; Wang, K.; Liu, S.; Wang, D. W.; Chen, T. H.; Wang, H. Y.; Ngo, A. T.; Wang, D. H. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 2020, 5, 534-542.

20

Wei, C. L.; Tan, L. W.; Tao, Y.; An, Y. L.; Tian, Y.; Jiang, H. Y.; Feng, J. K.; Qian, Y. T. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Mater. 2021, 34, 12-21.

21

Wei, C. L.; Fei, H. F.; An, Y. L.; Tao, Y.; Feng, J. K.; Qian, Y. T. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 2019, 7, 18861-18870.

22

Zhang, W. D.; Tu, Z. Y.; Qian, J. W.; Choudhury, S.; Archer, L. A.; Lu, Y. Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001.

23

Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015, 15, 6149-6154.

24

Liu, H.; Cheng, X. B.; Huang, J. Q.; Kaskel, S.; Chou, S. L.; Park, H. S.; Zhang, Q. Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge. ACS Mater. Lett. 2019, 1, 217-229.

25

Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Lithium- magnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1808756.

26

Xu, Y. B.; Wu, H. P.; Jia, H.; Zhang, J. G.; Xu, W.; Wang, C. M. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 2020, 14, 8766-8775.

27

Xu, X. Y.; Liu, Y. Y.; Hwang, J. Y.; Kapitanova, O. O.; Song, Z. X.; Sun, Y. K.; Matic, A.; Xiong, S. Z. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 2020, 10, 2002390.

28

Wang, A. X.; Deng, Q. B.; Deng, L. J.; Guan, X. Z.; Luo, J. Y. Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 2019, 29, 1902630.

29

Wang, X. F.; Pawar, G.; Li, Y. J.; Ren, X. D.; Zhang, M. H.; Lu, B. Y.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 2020, 19, 1339-1345.

30

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 2020, 7, 2002212.

31

Huang, S. B.; Yang, H.; Hu, J. K.; Liu, Y. C.; Wang, K. X.; Peng, H. L.; Zhang, H.; Fan, L. Z. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small 2019, 15, 1904216.

32

Liu, Y. M.; Qin, X. Y.; Liu, F.; Huang, B. H.; Zhang, S. Q.; Kang, F. Y.; Li, B. H. Basal nanosuit of graphite for high-energy hybrid Li batteries. ACS Nano 2020, 14, 1837-1845.

33

Luan, J. Y.; Zhang, Q.; Yuan, H. Y.; Sun, D.; Peng, Z. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode. Adv. Sci. 2019, 6, 1901433.

34

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

35

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248- 4253.

36

Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241-248.

37

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-1140.

38

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72-133.

39

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

40

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Zeng, G. F.; Feng, J. K.; Qian, Y. T. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019, 15, 1903214.

41

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Tao, Y.; Li, Y.; Feng, J. K. Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chin. Chem. Lett. 2020, 31, 980-983.

42

Wei, C. L.; Fei, H. F.; An, Y. L.; Zhang, Y. C.; Feng, J. K. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 2019, 309, 362-370.

43

Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

44

Shi, H. D.; Zhang, C. J.; Lu, P. F.; Dong, Y. F.; Wen, P. C.; Wu, Z. S. Conducting and lithiophilic MXene/graphene framework for high- capacity, dendrite-free lithium-metal anodes. ACS Nano 2019, 13, 14308-14318.

45

Fang, Y. Z.; Zhang, Y.; Zhu, K.; Lian, R. Q.; Gao, Y.; Yin, J. J.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019, 13, 14319-14328.

46

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028-15033.

47

Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

48

Gu, J. A.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891-898.

49

Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820.

50

Chen, X.; Shang, M. W.; Niu, J. J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 2020, 20, 2639-2646.

51

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Guo, H. H.; Feng, J. K.; Qian, Y. T. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223-233.

52

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.

53

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565-3604.

54

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-8933.

55

Cheng, Z. Y.; Xie, M. L.; Mao, Y. Y.; Ou, J. X.; Zhang, S. J.; Zhao, Z.; Li, J. L.; Fu, F.; Wu, J. H.; Shen, Y. B. et al. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Adv. Energy Mater. 2020, 10, 1904230.

56

Zhao, Z. D.; Chen, W. J.; Impeng, S.; Li, M. X.; Wang, R.; Liu, Y. C.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C. X. et al. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 2020, 8, 3459-3467.

57

Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

58

Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Li-ions using covalent organic frameworks towards dendrite-Free lithium anodes: A mechanism based on a Galton Board. Sci. China Chem. 2020, 63, 1306-1314.

59

Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461-10470.

60

Song, Y. W.; Shi, P.; Li, B. Q.; Chen, X.; Zhao, C. X.; Chen, W. J.; Zhang, X. Q.; Chen, X.; Zhang, Q. Covalent organic frameworks construct precise lithiophilic sites for uniform lithium deposition. Matter 2021, 4, 253-264.

61

Xu, Y.; Zhou, Y.; Li, T.; Jiang, S. H.; Qian, X.; Yue, Q.; Kang, Y. J. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 25, 334-341.

62

Wang, S. H.; Niu, H. Y.; Cao, D.; Cai, Y. Q. Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals. Talanta 2019, 194, 522-527.

63

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816-19822.

64

Chen, L.; Wang, W. P.; Fang, Q. Y.; Zuo, K. C.; Hou, G. M.; Ai, Q.; Li, Q. L.; Ci, L. J.; Lou, J. High performance hierarchically nanostructured graphene oxide/covalent organic framework hybrid membranes for stable organic solvent nanofiltration. Appl. Mater. Today 2020, 20, 100791.

65

Fan, F. H.; Xiang, P. Y.; Zhao, L. Q. Vibrational spectra analysis of amorphous lactose in structural transformation: Water/temperature plasticization, crystal formation, and molecular mobility. Food Chem. 2021, 341, 128215.

66

Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.

67

Zhang, S. M.; Chen, J.; Tang, T.; Jiang, Y. Z.; Chen, G. R.; Shao, Q.; Yan, C. H.; Zhu, T. J.; Gao, M. X.; Liu, Y. F. et al. A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithium- ion batteries. J. Mater. Chem. A 2018, 6, 3610-3624.

68

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pan, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469-3491.

69

Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

70

Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301-331.

71

Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

72

Jin, F.; Hu, C. J.; Liu, C. H.; Zheng, Y.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Enhancing the performance of sulfurized polyacrylonitrile cathode by in-situ wrapping. J. Electroanal. Chem. 2019, 835, 156-160.

File
12274_2021_3433_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 January 2021
Revised: 01 March 2021
Accepted: 01 March 2021
Published: 07 April 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2020JQ19), Taishan Scholars Program of Shandong Province (Nos. tsqn201812002 and ts20190908), the National Natural Science Foundation of China (No. 51972198), the Young Scholars Program of Shandong University (No. 2016WLJH03), the State Key Program of National Natural Science of China (No. 61633015), Shenzhen Fundamental Research Program (No. JCYJ20190807093405503), and the Project of the Taishan Scholar (No. ts201511004).

Return