Journal Home > Volume 14 , Issue 12

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic-resolution characterization on the structure of strontium doped barium titanate nanoparticles

Show Author's information Haoyu Jiang1( )Jizhen Qi2Dongchang Wu5Wei Lu2,3Jiahui Qian3Haifeng Qu3Yixiao Zhang1Pei Liu4( )Xi Liu1( )Liwei Chen1,2( )
In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering Shanghai Jiao Tong UniversityShanghai 200240 China
i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of SciencesSuzhou 215123 China
Suzhou Bao Shun Mei Technology Co., Ltd., Room 305, Building 11, 99 Jinji Lake Avenue, Suzhou Industrial ParkSuzhou 215123 China
DTU Nanolab, Technical University of Denmark, Fysikvej, Building 307Lyngby 2800 Denmark
Shanghai Nanoport, Thermo Fisher Scientific Building A, 2517 Jinke Road, Pudong DistrictShanghai 201203 China

Abstract

Ferroelectric barium titanate nanoparticles (BTO NPs) may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors. While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade, the majority of the investigation was carried out in thin-film materials; therefore, the doping effect on nanoparticles remains unclear. Especially, doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled. In this work, we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), integrated differential phase contrast (iDPC)-STEM, and energy dispersive X-ray spectroscopy (EDX) mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles. Powder X-ray diffraction (PXRD) results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase, but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles. Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.

Keywords: doping effect, barium titanate nanoparticles, structural transition, high-angle annular dark-field scanning transmission electron microscopy, integrated differential phase contrast

References(26)

1

Zou, K. L.; Dan, Y.; Xu, H. J.; Zhang, Q. F.; Lu, Y. M.; Huang, H. T.; He, Y. B. Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 2019, 113, 190–201.

2

Pan, M. J.; Randall, C. A. A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 2010, 26, 44–50.

3

Kumari, A.; Dasgupta Ghosh, B. Effect of strontium doping on structural and dielectric behaviour of barium titanate nanoceramics. Adv. Appl. Ceram. 2018, 117, 427–435.

4

Zaman, T.; Islam, K.; Rahman, A.; Hussain, A.; Matin, A.; Rahman, S. Mono and co-substitution of Sr2+ and Ca2+ on the structural, electrical and optical properties of barium titanate ceramics. Ceram. Int. 2019, 45, 10154–10162.

5

Jamaluddin, A.; Suwarni; Supriyanto, A.; Iriani, Y. Properties of strontium doped barium titanate powder prepared by solid state reaction. J. Phys. Conf. Ser. 2016, 776, 012052.

6

Kim, S. D.; Hwang, G. T.; Song, K.; Jeong, C. K.; Park, K. I.; Jang, J.; Kim, K. H.; Ryu, J.; Choi, S. Y. Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Energy 2019, 58, 78–84.

7

Bosch, E. G. T.; Lazić, I. Analysis of HR-STEM theory for thin specimen. Ultramicroscopy 2015, 156, 59–72.

8

Shen, B. Y.; Chen, X.; Shen, K.; Xiong, H.; Wei, F. Imaging the node-linker coordination in the bulk and local structures of metal- organic frameworks. Nat. Commun. 2020, 11, 2692.

9

Dekkers, N. H.; De Lang, H. Differential phase contrast in a STEM. Optik 1974, 41, 452–456.

10

Carlsson, A.; Alexandrou, I.; Yücelen, E.; Bosch, E. G. T.; Lazić, I. Low dose imaging using simultaneous iDPC- and ADF-STEM for beam sensitive crystalline structures. Microsc. Microanal. 2018, 24, 122–123.

11

Shen, B. Y.; Chen, X.; Cai, D. L.; Xiong, H.; Liu, X.; Meng, C. G.; Han, Y.; Wei, F. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 2020, 32, 1906103.

12

Liu, L. M.; Wang, N.; Zhu, C. Z.; Liu, X. N.; Zhu, Y. H.; Guo, P.; Alfilfil, L.; Dong, X. L.; Zhang, D. L.; Han, Y. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem., Int. Ed. 2020, 59, 819–825.

13

Kondo, S.; Ishihara, A.; Tochigi, E.; Shibata, N.; Ikuhara, Y. Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commun. 2019, 10, 2112.

14

Wu, Y. J.; Huang, Y. H.; Wang, N.; Li, J.; Fu, M. S.; Chen, X. M. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J. Eur. Ceram. Soc. 2017, 37, 2099–2104.

15

Rheinheimer, W.; Bäurer, M.; Chien, H.; Rohrer, G. S.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J. The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater. 2015, 82, 32–40.

16

Campanini, M.; Trassin, M.; Ederer, C.; Erni, R.; Rossell, M. D. Buried in-plane ferroelectric domains in Fe-doped single-crystalline aurivillius thin films. ACS Appl. Electron. Mater. 2019, 1, 1019–1028.

17

Barzilay, M.; Qiu, T.; Rappe, A. M.; Ivry, Y. Epitaxial TiOx surface in ferroelectric BaTiO3: Native structure and dynamic patterning at the atomic scale. Adv. Funct. Mater. 2019, 30, 1902549.

18

Smith, M. B.; Page, K.; Siegrist, T.; Redmond, P. L.; Walter, E. C.; Seshadri, R.; Brus, L. E.; Steigerwald, M. L. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 2008, 130, 6955–6963.

19

Estandía, S.; Sánchez, F.; Chisholm, M. F.; Gázquez, J. Rotational polarization nanotopologies in BaTiO3/SrTiO3 superlattices. Nanoscale 2019, 11, 21275–21283.

20

Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J. D.; Schlepütz, C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.; Dedon, L. R. et al. Observation of polar vortices in oxide superlattices. Nature 2016, 530, 198–201.

21

Polking, M. J.; Han, M. G.; Yourdkhani, A.; Petkov, V.; Kisielowski, C. F.; Volkov, V. V.; Zhu, Y. M.; Caruntu, G.; Alivisatos, A. P.; Ramesh, R. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 2012, 11, 700–709.

22

MacArthur, K. E.; Brown, H. G.; Findlay, S. D.; Allen, L. J. Probing the effect of electron channelling on atomic resolution energy dispersive X-ray quantification. Ultramicroscopy 2017, 182, 264–275.

23

Lazić, I.; Bosch, E. G. T.; Lazar, S. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 2016, 160, 265–280.

24

Yücelen, E.; Lazić, I.; Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 2018, 8, 2676.

25

Nord, M.; Vullum, P. E.; MacLaren, I.; Tybell, T.; Holmestad, R. Atomap: A new software tool for the automated analysis of atomic resolution images using two-dimensional gaussian fitting. Adv. Struct. Chem. Imaging 2017, 3, 9.

26

Sun, Y. W.; Abid, A. Y.; Tan, C. B.; Ren, C. L.; Li, M. Q.; Li, N.; Chen, P.; Li, Y. H.; Zhang, J. M.; Zhong, X. L. et al. Subunit cell– level measurement of polarization in an individual polar vortex. Sci. Adv. 2019, 5, eaav4355.

File
12274_2021_3431_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2021
Revised: 26 February 2021
Accepted: 01 March 2021
Published: 16 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21625304, 21872163, 21991153, 22072090, 21991153, and 21991150). L. C. acknowledges the support from the Ministry of Science and Technology (No. 2016YFA0200703). P. L. acknowledges the financial support from the Carlsberg Foundation.

Return