Journal Home > Volume 14 , Issue 12

A new vertically aligned nanocomposite (VAN) structure based on two-dimensional (2D) layered oxides has been designed and self-assembled on both LaAlO3 (001) and SrTiO3 (001) substrates. The new VAN structure consists of epitaxially grown Co3O4 nanopillars embedded in the Bi2WO6 matrix with a unique 2D layered structure, as evidenced by the microstructural analysis. Physical property measurements show that the new Bi2WO6-Co3O4 VAN structure exhibits strong ferromagnetic and piezoelectric response at room temperature as well as anisotropic permittivity response. This work demonstrates a new approach in processing multifunctional VANs structure based on the layered oxide systems towards future nonlinear optics, ferromagnets, and multiferroics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel vertically aligned nanocomposite of Bi2WO6-Co3O4 with room-temperature multiferroic and anisotropic optical response

Show Author's information Leigang Li1,§Shikhar Misra1,§Xingyao Gao1Juncheng Liu1Han Wang1Jijie Huang1Bruce Zhang2Ping Lu3Haiyan Wang1,2( )
School of Materials Engineering Purdue UniversityWest LafayetteIndiana 47907 USA
School of Electrical and Computer Engineering Purdue UniversityWest LafayetteIndiana 47907 USA
Sandia National LaboratoryAlbuquerqueNew Mexico 87185 USA

§ Leigang Li and Shikhar Misra contributed equally to this work.

Abstract

A new vertically aligned nanocomposite (VAN) structure based on two-dimensional (2D) layered oxides has been designed and self-assembled on both LaAlO3 (001) and SrTiO3 (001) substrates. The new VAN structure consists of epitaxially grown Co3O4 nanopillars embedded in the Bi2WO6 matrix with a unique 2D layered structure, as evidenced by the microstructural analysis. Physical property measurements show that the new Bi2WO6-Co3O4 VAN structure exhibits strong ferromagnetic and piezoelectric response at room temperature as well as anisotropic permittivity response. This work demonstrates a new approach in processing multifunctional VANs structure based on the layered oxide systems towards future nonlinear optics, ferromagnets, and multiferroics.

Keywords: Bi2WO6, multiferroics, Co3O4, vertically aligned nanocomposite (VAN), Aurivillius oxides, layered oxides

References(45)

1

Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.

2

Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.

3

Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

4

Van Aken, B. B.; Palstra, T. T. M.; Filippetti, A.; Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 2004, 3, 164–170.

5

Marti, X.; Fina, I.; Skumryev, V.; Ferrater, C.; Varela, M.; Fábrega, L.; Sánchez, F.; Fontcuberta, J. Strain tuned magnetoelectric coupling in orthorhombic YMnO3 thin films. Appl. Phys. Lett. 2009, 95, 142903.

6

Chatterji, T.; Ouladdiaf, B.; Henry, P. F.; Bhattacharya, D. Magnetoelastic effects in multiferroic YMnO3. J. Phys. Condens. Matter 2012, 24, 336003.

7

Zhang, Q. H.; Tan, G. T.; Gu, L.; Yao, Y.; Jin, C. Q.; Wang, Y. G.; Duan, X. F.; Yu, R. C. Direct observation of multiferroic vortex domains in YMnO3. Sci. Rep. 2013, 3, 2741.

8

Zhang, W. R.; Fan, M.; Li, L. G.; Chen, A. P.; Su, Q.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y. Heterointerface design and strain tuning in epitaxial BiFeO3: CoFe2O4 nanocomposite films. Appl. Phys. Lett. 2015, 107, 212901.

9

Pradhan, A. K.; Zhang, K.; Hunter, D.; Dadson, J. B.; Loiutts, G. B.; Bhattacharya, P.; Katiyar, R.; Zhang, J.; Sellmyer, D. J.; Roy, U. N. et al. Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 2005, 97, 093903.

10

Zhao, T.; Scholl, A.; Zavaliche, F.; Lee, K.; Barry, M.; Doran, A.; Cruz, M. P.; Chu, Y. H.; Ederer, C.; Spaldin, N. A. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 2006, 5, 823–829.

11

Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303, 661–663.

12

Tsai, C. Y.; Chen, H. R.; Chang, F. C.; Tsai, W. C.; Cheng, H. M.; Chu, Y. H.; Lai, C. H.; Hsieh, W. F. Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures. Appl. Phys. Lett. 2013, 102, 132905.

13

Murakami, M.; Chang, K. S.; Aronova, M. A.; Lin, C. L.; Yu, M. H.; Simpers, J. H.; Wuttig, M.; Takeuchi, I.; Gao, C.; Hu, B. et al. Tunable multiferroic properties in nanocomposite PbTiO3-CoFe2O4 epitaxial thin films. Appl. Phys. Lett. 2005, 87, 112901.

14

Imai, A.; Cheng, X.; Xin, H. L.; Eliseev, E. A.; Morozovska, A. N.; Kalinin, S. V.; Takahashi, R.; Lippmaa, M.; Matsumoto, Y.; Nagarajan, V. Epitaxial Bi5Ti3FeO15–CoFe2O4 pillar–matrix multiferroic nanostructures. ACS Nano 2013, 7, 11079–11086.

15

Singh, M. P.; Prellier, W.; Simon, C.; Raveau, B. Magnetocapacitance effect in perovskite-superlattice based multiferroics. Appl. Phys. Lett. 2005, 87, 022505.

16

Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113.

17

Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98.

18

Chen, A. P.; Zhou, H. H.; Bi, Z. X.; Zhu, Y. Y.; Luo, Z. P.; Bayraktaroglu, A.; Phillips, J.; Choi, E. M.; MacManus-Driscoll, J. L.; Pennycook, S. J. et al. A new class of room-temperature multiferroic thin films with bismuth-based supercell structure. Adv. Mater. 2013, 25, 1028–1032.

19

Li, L. G.; Zhang, W. R.; Khatkhatay, F.; Jian, J.; Fan, M.; Su, Q.; Zhu, Y. Y.; Chen, A. P.; Lu, P.; Zhang, X. H. et al. Strain and interface effects in a novel bismuth-based self-assembled supercell structure. ACS Appl. Mater. Interfaces 2015, 7, 11631–11636.

20

Zhang, W. R.; Li, M. T.; Chen, A. P.; Li, L. G.; Zhu, Y. Y.; Xia, Z. H.; Lu, P.; Boullay, P.; Wu, L. J.; Zhu, Y. M. et al. Two-dimensional layered oxide structures tailored by self-assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 2016, 8, 16845– 16851.

21

Chen, A. P.; Zhou, H. H.; Zhu, Y. Y.; Li, L. G.; Zhang, W. R.; Narayan, J.; Wang, H. Y.; Jia, Q. X. Stabilizing new bismuth compounds in thin film form. J. Mater. Res. 2016, 31, 3530–3537.

22
Nishida, M.; Sakaguchi, Y.; Takeda, H.; Nishida, T.; Uchiyama, K.; Shiosaki, T. Piezoelectric properties of bismuth layered-structure ferroelectric Bi2WO6 mono-domain crystals. In Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, Nara, Japan, 2007, pp 592–593.https://doi.org/10.1109/ISAF.2007.4393339
DOI
23

Zeng, T.; Yan, H. X.; Ning, H. P.; Zeng, J. T.; Reece, M. J. Piezoelectric and ferroelectric properties of bismuth tungstate ceramics fabricated by spark plasma sintering. J. Am. Chem. Soc. 2009, 92, 3108–3110.

24

Djani, H.; Hermet, P.; Ghosez, P. First-principles characterization of the P21ab ferroelectric phase of aurivillius Bi2WO6. J. Phys. Chem. C 2014, 118, 13514–13524.

25

Choi, W. S.; Chisholm, M. F.; Singh, D. J.; Choi, T.; Jellison, G. E. Jr.; Lee, H. N. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 2012, 3, 689.

26

Choi, W. S.; Lee, H. N. Band gap tuning in ferroelectric Bi4Ti3O12 by alloying with LaTMO3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al). Appl. Phys. Lett. 2012, 100, 132903.

27

Fan, M.; Zhang, W. R.; Khatkhatay, F.; Li, L. G.; Wang, H. Y. Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La0.7Sr0.3MnO3)1−x: (CeO2)x nanocomposites. J. Appl. Phys. 2015, 118, 065302.

28

Zhang, W. R.; Li, L. G.; Lu, P.; Fan, M.; Su, Q.; Khatkhatay, F.; Chen, A. P.; Jia, Q. X.; Zhang, X. H.; MacManus-Driscoll, J. L. et al. Perpendicular exchange-biased magnetotransport at the vertical heterointerfaces in La0.7Sr0.3MnO3: NiO nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 21646–21651.

29

Huang, J. J.; Chen, L.; Jian, J.; Tyler, K.; Li, L. G.; Wang, H.; Wang, H. Y. Magnetic (CoFe2O4)0.1-(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films. J. Phys. Condens. Matter 2016, 28, 025702.

30

Zhang, W. R.; Jian, J.; Chen, A. P.; Jiao, L.; Khatkhatay, F.; Li, L. G.; Chu, F.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO3: CoFe2O4 vertically aligned nanocomposite thin films. Appl. Phys. Lett. 2014, 104, 062402.

31

Gao, X. Y.; Li, L. G.; Zhang, D.; Wang, X. J.; Jian, J.; He, Z. H.; Wang, H. Y. Novel layered Bi3MoMTO9 (MT = Mn, Fe, Co and Ni) thin films with tunable multifunctionalities. Nanoscale 2020, 12, 5914–5921.

32

Wang, H.; Li, L. G.; Huang, J. J.; Gao, X. Y.; Sun, X.; Wang, H. Y. Multiferroic vertically aligned nanocomposite with CoFe2O4 nanocones embedded in layered Bi2WO6 matrix. Mater. Res. Lett. 2019, 7, 418–425.

33

Chen, A. P.; Harrell, Z.; Lu, P.; Enriquez, E.; Li, L. G.; Zhang, B.; Dowden, P.; Chen, C. L.; Wang, H. Y.; MacManus-Driscoll, J. L. et al. Strain enhanced functionality in a bottom-up approach enabled 3D super-nanocomposites. Adv. Funct. Mater. 2019, 29, 1900442.

34

Li, L. G.; Sun, L. Y.; Gomez-Diaz, J. S.; Hogan, N. L.; Lu, P.; Khatkhatay, F.; Zhang, W. R.; Jian, J.; Huang, J. J.; Su, Q. et al. Self-assembled epitaxial Au–oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano Lett. 2016, 16, 3936–3943.

35

Wang, X. J.; Wang, H. H.; Jian, J.; Rutherford, B. X.; Gao, X. Y.; Xu, X. S.; Zhang, X. H.; Wang, H. Y. Metal-free oxide-nitride heterostructure as a tunable hyperbolic metamaterial platform. Nano Lett. 2020, 20, 6614–6622.

36

Paldi, R. L.; Wang, X. J.; Sun, X.; He, Z. H.; Qi, Z. M.; Zhang, X. H.; Wang, H. Y. Vertically aligned AgxAu1–x alloyed nanopillars embedded in ZnO as nanoengineered low-loss hybrid plasmonic metamaterials. Nano Lett. 2020, 20, 3778–3785.

37

von Harrach, H.; Dona, P.; Freitag, B.; Soltau, H.; Niculae, A.; Rohde, M. An integrated silicon drift detector system for FEI schottky field emission transmission electron microscopes. Microsc. Microanal. 2009, 15, 208–209.

38

Lu, P.; Zhou, L.; Kramer, M. J.; Smith, D. J. Atomic-scale chemical imaging and quantification of metallic alloy structures by energy- dispersive X-ray spectroscopy. Sci. Rep. 2014, 4, 3945.

39

Fan, M.; Zhang, B.; Wang, H.; Jian, J.; Sun, X.; Huang, J. J.; Li, L. G.; Zhang, X. H.; Wang, H. Y. Self-organized epitaxial vertically aligned nanocomposites with long-range ordering enabled by substrate nanotemplating. Adv. Mater. 2017, 29, 1606861.

40

Su, Q.; Zhang, W. R.; Lu, P.; Fang, S. M.; Khatkhatay, F.; Jian, J.; Li, L. G.; Chen, F. L.; Zhang, X. H.; MacManus-Driscoll, J. L. et al. Self-assembled magnetic metallic nanopillars in ceramic matrix with anisotropic magnetic and electrical transport properties. ACS Appl. Mater. Interfaces 2016, 8, 20283–20291.

41

Huang, J. J.; Li, L. G.; Lu, P.; Qi, Z. M.; Sun, X.; Zhang, X. H.; Wang, H. Y. Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 2017, 9, 7970–7976.

42

Li, L. G.; Boullay, P.; Lu, P.; Wang, X. J.; Jian, J.; Huang, J. J.; Gao, X. Y.; Misra, S.; Zhang, W. R.; Perez, O. et al. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 2017, 17, 6575–6582.

43

Seshadri, R.; Hill, N. A. Visualizing the role of Bi 6s "lone pairs" in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 2001, 13, 2892–2899.

44

Misra, S.; Li, L. G.; Gao, X. Y.; Jian, J.; Qi, Z. M.; Zemlyanov, D.; Wang, H. Y. Tunable physical properties in BiAl1−xMnxO3 thin films with novel layered supercell structures. Nanoscale Adv. 2020, 2, 315–322.

45

Kormondy, K. J.; Posadas, A. B.; Slepko, A.; Dhamdhere, A.; Smith, D. J.; Mitchell, K. N.; Willett-Gies, T. I.; Zollner, S.; Marshall, L. G.; Zhou, J. S. et al. Epitaxy of polar semiconductor Co3O4 (110): Growth, structure, and characterization. J. Appl. Phys. 2014, 115, 243708.

File
12274_2021_3429_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 January 2021
Revised: 24 February 2021
Accepted: 26 February 2021
Published: 14 June 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgement

This work is supported by the U.S. Office of Naval Research (ONR, N00014-20-1-2600). The high-resolution TEM/STEM characterization at Purdue University is supported by the U.S. National Science Foundation (Nos. DMR-1565822 and DMR- 2016453). Sandia National Laboratories is a multi-program laboratory managed and operated by National Technology and Engineering Solutions of Sandia, L. L. C., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Return